Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N
Answer:
The tension in the rope is 281.60 N.
Explanation:
Given that,
Length = 3.0 m
Weight = 600 N
Distance = 1.0 m
Angle = 60°
Consider half of the ladder,
let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.
....(I)
.....(II)
On taking moment about base

Put the value into the formula


....(III)
We need to calculate the force for ladder


We need to calculate the tension in the rope
From equation (3)




Hence, The tension in the rope is 281.60 N.
Answer:
The effect of lowering the condenser pressure on different parameters is explained below.
Explanation:
The simple ideal Rankine cycle is shown in figure.
Effect of lowering the condenser pressure on
(a). Pump work input :- By lowering the condenser pressure the pump work increased.
(b) Turbine work output :- By lowering the condenser pressure the turbine work increased.
(c). Heat supplied :- Heat supplied increases.
(d). Heat rejected :- The heat rejected may increased or decreased.
(e). Efficiency :- Cycle efficiency is increased.
(f). Moisture content at turbine exit :- Moisture content increases.
Answer:
5cm east& 1cm west from A
Explanation:
https://brainly.ph/question/2753392
The answer to the blank above is 20. The speed limit given provided that you cannot see the tracks for 400 ft in both directions is always 20 mph. Basically, this 20 mph is decided based upon the traffic laws in order to avoid road casualties. Since it is "uncontrolled railroad crossing", the minimum speed should be implemented to slow down for the purpose of traffic calming measures. Other than this, the 20 mph is also applicable in narrowing roads as well as speed humps.