answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
2 years ago
6

A piano wire has a length of 81 cm and a mass of 2.0

Physics
1 answer:
choli [55]2 years ago
4 0
<span>Frequency = 394 Hz
 Length of the string L = 81 cm = 0.81 m
 Mass of the string = 0.002 kg
 Tension T = ?
 Wave length of the string is two times the length.
  n x lambda = 2L, we also have lambda = vt = v / f, t is time period and given n = 1.
  Therefore L = v / 2f => v = 2fL
 Deriving form force equation, force here is tension T so
  v = squareroot of (TL/m) hence
   2fL = squareroot of (TL/m) => 4 x f^2 x L^2 = (T x L) / m => T = 4 x f^2 x L x m
 T = 4 x 0.81 x (394)^2 x 0.002 = 4 x 0.81 x 155236 x 0.002
 T = 1005.9 N = 1.006 x 10^3 N</span>
You might be interested in
When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
MA_775_DIABLO [31]

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2

In parallel

\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}

\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0

Solving the above quadratic equation

\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}

\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

6 0
2 years ago
1)After catching the ball, Sarah throws it back to Julie. However, Sarah throws it too hard so it is over Julie's head when it r
DENIUS [597]

Answer:

1)

v_{oy}=11.29\ m/s

2)

y=7.39\ m

Explanation:

<u>Projectile Motion</u>

When an object is launched near the Earth's surface forming an angle \theta with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.

The heigh of an object can be computed as

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

Where y_o is the initial height above the ground level, v_{oy} is the vertical component of the initial velocity and t is the time

The y-component of the speed is

v_y=v_{oy}-gt

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of v_o

The object will reach the maximum height when v_y=0. It allows us to compute the time to reach that point

v_{oy}-gt_m=0

Solving for t_m

\displaystyle t_m=\frac{v_{oy}}{g}

Thus, the maximum heigh is

\displaystyle y_m=y_o+\frac{v_{oy}^2}{2g}

We know this value is 8 meters

\displaystyle y_o+\frac{v_{oy}^2}{2g}=8

Solving for v_{oy}

\displaystyle v_{oy}=\sqrt{2g(8-y_o)}

Replacing the known values

\displaystyle v_{oy}=\sqrt{2(9.8)(8-1.5)}

\displaystyle v_{oy}=11.29\ m/s

2) We know at t=1.505 sec the ball is above Julie's head, we can compute

\displaystyle y=y_o+V_{oy}t-\frac{gt^2}{2}

\displaystyle y=1.5+(11.29)(1.505)-\frac{9.8(1.505)^2}{2}

\displaystyle y=1.5\ m+16,991\ m-11.098\ m

y=7.39\ m

5 0
2 years ago
A wire with a length of 150 m and a radius of 0.15 mm carries a current with a uniform current density of 2.8 x 10^7A/m^2. The c
Mrac [35]

Answer:

The current is 2.0 A.

(A) is correct option.

Explanation:

Given that,

Length = 150 m

Radius = 0.15 mm

Current densityJ=2.8\times10^{7}\ A/m^2

We need to calculate the current

Using formula of current density

J = \dfrac{I}{A}

I=J\timesA

Where, J = current density

A = area

I = current

Put the value into the formula

I=2.8\times10^{7}\times\pi\times(0.15\times10^{-3})^2

I=1.97=2.0\ A

Hence, The current is 2.0 A.

7 0
1 year ago
The air in a 6.00 L tank has a pressure of 2.00 atm. What is the final pressure, in atmospheres, when the air is placed in tanks
ser-zykov [4K]

Explanation:

Given that,

Initial volume of tank, V = 6 L

Initial pressure, P = 2 atm

We need to find the final pressure when the air is placed in tanks that have the following volumes if there is no change in temperature and amount of gas:

(a) V' = 1 L

It is a case of Boyle's law. It says that volume is inversely proportional to the pressure at constant temperature. So,

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{1}\\\\P'=12\ atm

(b) V' = 2500 mL

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{2500\times 10^{-3}}\\\\P'=4.8\ atm

(c) V' = 750 mL

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{750\times 10^{-3}}\\\\P'=16\ atm

(d) V' = 8 L

New pressure becomes :

PV=P'V'\\\\P'=\dfrac{PV}{V'}\\\\P'=\dfrac{6\times 2}{8}\\\\P'=1.5\ atm

Hence, this is the required solution.

3 0
2 years ago
Which graph represents the motion of an object traveling with a positive velocity and a negative acceleration?
nignag [31]
Answer
graph 2

Explanation
Velocity is the rate of change of displacement. 
Velocity = (change in displacement)/(change is time)
In graph 2, the gradient of the curve is positive, indicating that the velocity is positive.
Acceleration is the rate of change of velocity. 
The steepness of the slope of the same graph (graph 2) is decreasing. This shows that the velocity is decreasing hence a negative acceleration. 


5 0
2 years ago
Read 2 more answers
Other questions:
  • What is a limitation of the electron cloud model theory that a law about electrons would not have?
    11·2 answers
  • A thermally isolated system is made up of a hot piece of aluminum and a cold piece of copper; the aluminum and the copper are in
    5·1 answer
  • A large box of mass M is pulled across a horizontal, frictionless surface by a horizontal rope with tension T. A small box of ma
    8·1 answer
  • An ice rescue team pulls a stranded hiker off a frozen lake by throwing him a rope and pulling him horizontally across the essen
    13·1 answer
  • A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is loc
    15·1 answer
  • A vertical wire carries current in the upward direction. An electron is traveling parallel to the wire. What is the angle ααalph
    13·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • 3. A very light bamboo fishing rod 3.0 m long is secured to a boat at the bottom end. It is
    13·1 answer
  • An electron accelerates through a 12.5 V potential difference, starting from rest, and then collides with a hydrogen atom, excit
    12·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!