answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
2 years ago
11

What properties of sound determine the volume of sound? Is this affected by the motion of the sound source?

Physics
1 answer:
TEA [102]2 years ago
8 0
The property of sound that determine its volume is its AMPLITUDE. The amplitude and the volume of the sound are directly varied. Which means that the larger the amplitude, the larger is the volume and the softer it is if the amplitude is smaller. It is not affected by the motion of the sound source so long as the barriers are not breached. 
You might be interested in
An electric winch is used to raise a 40-kg package and a 10-kg package vertically up the side of a building as pictured in the d
just olya [345]

Answer:

Explanation:

40 divided by 10 then which would equal 4. Add the 1.0 , 2 ,and 15 together. Then multply the 60 by 18.0 after you are done dividing the answer is 3 with a remainder of 6.

3 0
2 years ago
a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
Katena32 [7]

Answer:

a) factor b=\sqrt{2}

b) factor b=\frac{1}{2}

c) factor b=1

d) factor b=1

Explanation:

Time period of oscillating spring-mass system is given as:

T=\frac{1}{f}

T={2\pi} \sqrt{\frac{m}{k} }

where:

f= frequency of oscillation

m= mass of the object attached to the spring

k= stiffness constant of the spring

a) <u>On doubling the mass:</u>

  • New mass, m'=2m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k} }

T'=2\pi\sqrt{\frac{2m}{k} }

T'=\sqrt{2}\times  2\pi\sqrt{\frac{m}{k} } }

T'=\sqrt{2} \times T

where the factor b=\sqrt{2} as asked in the question.

b) On quadrupling the stiffness constant while other factors are constant:

New stiffness constant, k'=4k

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m}{k'} }\\\\T'=2\pi\sqrt{\frac{m}{4k} }\\\\T'=\frac{1}{2} \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=\frac{1}{2} \times T

where the factor  b=\frac{1}{2}  as asked in the question.

c) On quadrupling the stiffness constant as well as mass:

New stiffness constant, k'=4k

New mas, m'=4m

<u>Then the new time period:</u>

T'=2\pi\sqrt{\frac{m'}{k'} }\\\\T'=2\pi\sqrt{\frac{4m}{4k} }\\\\T'=1 \times  2\pi\sqrt{\frac{m}{k} } }\\\\T'=1 \times T

where factor b=1 as asked in the question.

d) On quadrupling the amplitude there will be no effect on the time period because T is independent of amplitude as we can observe in the equation.

so, factor b=1

7 0
1 year ago
A spaceship of frontal area 10 m2 moves through a large dust cloud with a speed of 1 x 106 m/s. The mass density of the dust is
Step2247 [10]

Answer:

The decelerating force is 3\times 10^{- 11}\ N

Solution:

As per the question:

Frontal Area, A = 10\ m^{2}

Speed of the spaceship, v = 1\times 10^{6}\ m/s

Mass density of dust, \rho_{d} = 3\times 10^{- 18}\ kg/m^{3}

Now, to calculate the average decelerating force exerted by the particle:

Mass,\ m = \rho_{d}V                                (1)

Volume, V = A\times v\times t

Thus substituting the value of volume, V in eqn (1):

m = \rho_{d}(Avt)

where

A = Area

v = velocity

t = time

m = \rho_{d}(A\times v\times t)                  (2)

Momentum,\ p = \rho_{d}(Avt)v = \rho_{d}Av^{2}t

From Newton's second law of motion:

F = \frac{dp}{dt}

Thus differentiating w.r.t time 't':

F_{avg} = \frac{d}{dt}(\rho_{d}Av^{2}t) = \rho_{d}Av^{2}

where

F_{avg} = average decelerating force of the particle

Now, substituting suitable values in the above eqn:

F_{avg} = 3\times 10^{- 18}\times 10\times 1\times 10^{6} = 3\times 10^{- 11}\ N

4 0
1 year ago
Two horses, Thunder and Misty, are accelerating a wagon 1.3 m/s2. The force of friction is 75 N. Thunder is pulling with a force
sasho [114]
Assumption both thunder and misty are pulling in same direction,
Net force= 1000N+800N-75N=1725N
Mass of wagon = 1725N/1.3ms^-2 = 1327kg
7 0
1 year ago
Read 2 more answers
The best way to cool soft and thick foods (such as beans, sauce or chili) when using the refrigerator is?
AnnZ [28]
<span>The best way to cool soft and thick foods when using the refrigerator is by having them to be placed and poured on a pan or another way is by having them to be placed in one container in which they are in a water bath, to be heated of.</span>
3 0
1 year ago
Read 2 more answers
Other questions:
  • A 15.7-g aluminum block is warmed to 53.2 °c and plunged into an insulated beaker containing 32.5 g of water initially at 24.5 °
    13·2 answers
  • An 8.0-kg history textbook is placed on a 1.25-m high desk. How large is the gravitational potential energy of the textbook-Eart
    11·2 answers
  • Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
    7·1 answer
  • A stunt cyclist needs to make a calculation for an upcoming cycle jump. The cyclist is traveling 100 ft/sec toward an inclined r
    8·1 answer
  • To calibrate your calorimeter cup, you first put 45 mL of cold water in the cup, and measure its temperature to be 24.7 °C. You
    7·1 answer
  • Two events are observed in a frame of reference S to occur at the same space point, with the second event occurring after a time
    14·1 answer
  • A solid sphere of mass 8.6 kg, made of metal whose density is 3,400 kg/, hangs by a cord. When the sphere is immersed in a liqui
    8·1 answer
  • A person is pushing a fully loaded 21.60 kg wheelbarrow at constant velocity along a plank that makes an angle ????=20.0∘ with t
    12·1 answer
  • In a pith ball experiment, the two pith balls are at rest. The magnitude of the tension in each string is |T|=0.55N, and the ang
    8·1 answer
  • What is the speed of light (in m/s) in air? (Enter your answer to at least four significant figures. Assume the speed of light i
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!