answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
2 years ago
15

At what distance above earth would a satellite have a period of 125 min?

Physics
2 answers:
Igoryamba2 years ago
6 0

Answer : h = 2.02\times 10^{6}\ m

Explanation :  We know that the time period

T = 2\pi\sqrt{\dfrac{r^{3}}{GM}}

angular acceleration \omega

Now,  we know

Centripetal acceleration = gravitational acceleration

\dfrac{GM}{r^{2}} = \dfrac {4\pi^{2}r}{T^{2}}

r ^{3} = \dfrac{GMT^{2}}{4\pi^{2}}

Now, put the value of G, M and T

r^{3} = \dfrac{6.67\times10^{-11}\times5.9\times10^{24}\times(7500)^{2}}{4\times(3.14)^{2}}

r^{3} = 5.6128\times10^{20}\ m^{3}

r = 8.25\times 10^{6}\ m

Now, we know the height of satellite from the earth surface

r = R+ h

h = 8.25\times10^{6} - 6.385\times10^{6}

h = 2.02\times 10^{6}\ m

Where, h is the distance of the satellite above earth surface.





Nezavi [6.7K]2 years ago
5 0
Rw^2 = GmM/r^2 
<span> Leads to 
</span><span> w^2 r^3 = GM 
</span><span> (2pi /T) ^2 r^3 = GM 
</span><span> 4pi^2 r^3 = GM T^2 
</span><span> r^3 = GM T^2 / 4pi^2 
</span><span> Work out r^3 then r. 
</span> T = 125 min = 125(60) = 7500 s 
<span> R = 6.38E6 m 
</span><span> m = 5.97E24 kg 
</span><span> G = 6.673E-11 
</span> r=<span> 8279791.78</span><span> m
 Since r = radius R of Earth + height above urface,h 
</span><span> h = r - R = </span><span> 8279791.78 - </span>6.38E6 = <span> <span>1899791.78 m
 h=</span></span><span> <span>1899.79178 Km</span></span>
You might be interested in
A brick of mass 2 kg is dropped from a rest position 5 m above the ground. what is its velocity at a height of 3 m above the gro
Rina8888 [55]
We can solve the problem by using the law of conservation of energy.

Using the ground as reference point, the mechanical energy of the brick when it is at 5 m from the ground is just potential energy (because the brick is initially at rest, so it doesn't have kinetic energy):
E= U = mgh=(2 kg)((9.81 m/s^2)(5 m)=98.1 J

when the brick is at h'=3 m from the ground, its mechanical energy is now sum of kinetic energy and potential energy:
E= K+U= \frac{1}{2} mv^2 + mgh'

where v is the velocity of the brick. Since E is conserved, it must be equal to the initial energy (98.1 J), so we can solve this equation to find v:
v= \sqrt{ \frac{2(E-mgh')}{m} }=6.3 m/s
8 0
2 years ago
A roadway for stunt drivers is designed for racecars moving at a speed of 40 m/s. A curved section of the roadway is a circular
Fynjy0 [20]

Answer:

Bank angle = 35.34o

Explanation:

Since the road is frictionless,

Tan (bank angle) = V^2/r*g

Where V = speed of the racing car in m/s, r = radius of the arc in metres and g = acceleration due to gravity in m/s^2

Tan ( bank angle) = 40^2/(230*9.81)

Tan (bank angle) = 0.7091

Bank angle = tan inverse (0.7091)

Bank angle = 35.34o

3 0
2 years ago
(a) What is the sum of the following four vectors in unit-vector notation? For that sum, what are (b) the magnitude, (c) the ang
avanturin [10]

6m at 0.9 radian means 6m at 51.57^0

Since positive angles are counter clockwise

6m at 51.57^0 can be written as 6*cos51.57^0i+6*sin51.57^0j = 3.73i+4.70j

5m at -75^0 can be written as 5*cos(-75)^0i+5*sin(-75)^0j = 1.294i-4.83j

4m at 1.2 radian means 4m at 68.75^0

4m at 68.75^0 can be written as 4*cos68.75^0i+4*sin68.75^0j = 1.45i+3.73j

6m at -210^0 can be written as 6*cos(-210)^0i+6*sin(-210)^0j = -5.20i-3j

a) So sum of the vector = 1.274i+0.6j

b) Magnitude = \sqrt{1.274^2+0.6^2} = 1.98 m

c) Angle,  tan\theta = \frac{0.6}{1.274} \\ \\ \theta = 25.22^0

7 0
2 years ago
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
2 years ago
In ocean waves, water particles move ________ and energy moves ________.
morpeh [17]
In ocean waves, water particles move with mechanical energy and energy moves with gravity

Not sure but hope it helps!
6 0
2 years ago
Read 2 more answers
Other questions:
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    11·1 answer
  • A thin film of polystyrene is used as an antireflective coating for fabulite (known as the substrate). the index of refraction o
    12·1 answer
  • An object which has a mass of 70 kg is sitting on a cliff 10 m high. Calculate the object's Potential energy. Given g = 10m/s2
    11·1 answer
  • your drop a coin from the top of a hundred-story building(1000m). If you ignore air resistance, how fast will it be falling righ
    8·2 answers
  • Which of the following statements is correct? Which of the following statements is correct? The more a muscle shortens, the more
    5·1 answer
  • A 250-kg crate is on a rough ramp, inclined at 30° above the horizontal. The coefficient of kinetic friction between the crate a
    15·2 answers
  • At a local swimming pool, the diving board is elevated h = 5.5 m above the pool's surface and overhangs the pool edge by L = 2 m
    12·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
  • While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
    11·1 answer
  • Use the idea of density to explain why the dead creatures sink to the seabed​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!