Yes a small child can play with fat child in the seesaw because if the the load distance is decreased the effort will increase. That's means if the distance between the fat boy and the fulcrum is decreased the small child needs less effort.so,he can play
Answer:
The impulse is 
The opponents velocity is 
The opponents head recoils velocity 
Explanation:
From the question we are told that
The force of the blow is 
The duration of the blow is 
The mass of the opponent is 
The mass of the opponents head is 
The impulse the boxer imparts is mathematically represented as

substituting values


The impulse can also be mathematically evaluated as

substituting values



The recoil velocity is mathematically represented as

substituting values


Step 2: calculate A and B magnitudes
Step 3: calculate x, y components
Step 4: sum vector components
Step 5: calculate magnitude of R
Step 6: calculate direction of R
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)