Answer: The Ampère -Max-well law
Explanation:
The Ampère -Max-well law relates magnetic flux and electric current. It determines the relationship between current in association with a magnetic field and also magnetic field in association to related current.
Answer:
B. W is positive and a is negative
Explanation:
As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have
initial angular velocity is termed as positive angular velocity

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed
so we will have

so here correct answer is
B. W is positive and a is negative
In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
If speed = distance/time , then time = speed/distance.
So...
Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)
Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))
I hope this was a helpful explanation, please reply if you have further questions about the problem.
Good luck!
Refer to the diagram shown below.
When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.
At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.
Answer:
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.