To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
Answer:
A. Stratosphere is said to be stable layer of the atmosphere when cool air sinks and warm air rises.Due to the fact that cool air has tendency to sink ,the air is not going fluctuating up and down in the stratosphere. This means that the air remains stationary or particles remains there for a very long duration.
B. If the lifted index is negative then the parcel temperature is warmer than the actual temperature. In addition, the parcel that is less warm than the surrounding will be less dense and will rise.
C. The water vapor come from different kinds of fronts; gust fronts from existing storms as their downdraft hits the surface, spreads and lifts air in front, upper air disturbances and surface heating by solar radiation making an unbalanced vertical profile .
D. the threshold used by storm chasers to assess if the dew point temperature is high enough to produce large thunderstorms is moisture ,the surface dew point needs to be 55 degrees fahrenheit or greater for a surface based thunderstorm to occur.
E. Wind shear is the change in wind direction or speed with height in an atmosphere.
Explanation:
Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.