Answer:
This is because the rubbing releases negative charges, called electrons, which can build up on one object to produce a static charge. For example, when you shuffle your feet across a carpet, electrons can transfer onto you, building up a static charge on your skin.
Explanation:
This is because the rubbing releases negative charges
Answer: A) 2 B) 4 C) 1
Explanation:
The Electric field from a parallel-plate capacitor is given by:
A) E=Q/(L^2 * ε0) so if we put a charge double the final electric field is double that the original.
B) from the above expression for the electric field, If the size of the plate is double, then the E final is four times weaker that the original.
C) If the distante between plates is doubled the final electric field is the same that initial.
(a) Both the girl and the boy have the same nonzero angular displacement.
Explanation:
The angular displacement of an object moving in uniform circular motion, as the boy and the girl on the merry-go-round, is given by

where
is the angular speed
t is the time interval
For a uniform object in uniform circular motion, all the points of the object have same angular speed. This means that the value of
is the same for the boy and the girl.
Therefore, if we consider the same time interval t, the boy and the girl will also have same nonzero angular displacement.
(b) The girl has greater linear speed.
Explanation:
The linear (tangential) speed of a point along the merry-go-round is given by

where
is the angular speed
r is the distance of the point from the centre of the merry-go-round
In this problem, the girl is near the outer edge, while the boy is closer to the centre: since the value of
is the same for both, this means that the value of r is larger for the girl, so the girl will also have a greater linear speed.
Answer:
The final temperature of the object will be 42.785 °C
Explanation:
When the heat added or removed from a substance causes a change in temperature in it, this heat is called sensible heat.
In other words, sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change), so that the temperature varies.
The equation for calculating the heat exchanges in this case is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- Q= 450 J
- c= 2.89

- m= 20 g
- ΔT= Tfinal - Tinitial= Tfinal - 35 °C
Replacing:
450 J= 2.89
*20 g* (Tfinal - 35°C)
Solving for Tfinal:

7.785 °C=Tfinal - 35°C
7.785 °C + 35°C= Tfinal
42.785 °C=Tfinal
<u><em>The final temperature of the object will be 42.785 °C</em></u>