answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
1 year ago
10

A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?

Physics
1 answer:
ankoles [38]1 year ago
4 0
Given required solution

M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J
You might be interested in
When were Earth’s landmasses first recognizable as the continents we know today? 10 million years ago 135 million years ago 180
Bess [88]

Answer:

b

Explanation:

i took the test

6 0
1 year ago
Read 2 more answers
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
1 year ago
A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. the astronaut is able to throw a spare 10.0 kg
Llana [10]

There are other forces at work here nevertheless we will imagine it is just a conservation of momentum exercise. Also the given mass of the astronaut is light astronaut.

The solution for this problem is using the formula: m1V1=m2V2 but we need to get V1:

V1= (m2/m1) V2


V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after throwing the tank. 

6 0
1 year ago
Read 2 more answers
An astronaut is in an all-metal chamber outside the space station when a solar storm results in the deposit of a large positive
ArbitrLikvidat [17]

Answer:

<em>c. The astronaut does not need to worry: the charge will remain on the outside surface.</em>

<em></em>

Explanation:

The astronaut need not worry because <em>according to Gauss's law of electrostatic, a hollow charged surface will have a net zero charge on the inside.</em> This is the case of a Gauss surface, and all the charges stay on the surface of the metal chamber. This same principle explains why passengers are safe from electrostatic charges, in an enclosed aircraft, high up in the atmosphere; all the charges stay on the surface of the aircraft.

3 0
2 years ago
An electron moving parallel to a uniform electric field increases its speed from 2.0 × 107 m/s to 4.0 × 107 m/s over a distance
jeka94

Answer:

1.8\times 105 N/C

Explanation:

We are given that

u=2\times 10^7 m/s

v=4\times 10^7 m/s

d=1.9 cm=\frac{1.9}{100}=0.019 m

Using 1m=100 cm

We have to find the electric field strength.

v^2-u^2=2as

Using the formula

(4\times 10^7)^2-(2\times 10^7)^2=2a(0.019)

16\times 10^{14}-4\times 10^{14}=0.038a

0.038a=12\times 10^{14}

a=\frac{12}{0.038}\times 10^{14}=3.16\times 10^{16}m/s^2

q=1.6\times 10^{-19} C

Mass of electron,m=9.1\times 10^{-31} kg

E=\frac{ma}{q}

Substitute the values

E=\frac{9.1\times 10^{-31}\times 3.16\times 10^{16}}{1.6\times 10^{-19}}

E=1.8\times 105 N/C

7 0
2 years ago
Other questions:
  • Which of the following are dwarf planets? Check all that apply. Ceres Namaka Eris Charon Haumea Makemake Pluto
    11·2 answers
  • n Section 12.3 it was mentioned that temperatures are often measured with electrical resistance thermometers made of platinum wi
    14·1 answer
  • The work function for tungsten metal is 4.52eV a. What is the cutoff (threshold) wavelength for tungsten? b. What is the maximum
    12·1 answer
  • A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo
    10·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10
    12·1 answer
  • Josh is learning to dive.
    7·1 answer
  • Carla sees an equation that models a nuclear change.
    11·1 answer
  • When developing a model of the cycling of water between the land, the ocean, and the atmosphere, one must include the forces tha
    8·1 answer
  • In the diagram, disk 1 has a moment of inertia of 3.4 kg · m2 and is rotating in the counterclockwise direction with an angular
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!