answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
2 years ago
5

An electron moving parallel to a uniform electric field increases its speed from 2.0 × 107 m/s to 4.0 × 107 m/s over a distance

of 1.9 cm. You may want to review (Pages 646 - 648) . Part A What is the electric field strength?
Physics
1 answer:
jeka942 years ago
7 0

Answer:

1.8\times 105 N/C

Explanation:

We are given that

u=2\times 10^7 m/s

v=4\times 10^7 m/s

d=1.9 cm=\frac{1.9}{100}=0.019 m

Using 1m=100 cm

We have to find the electric field strength.

v^2-u^2=2as

Using the formula

(4\times 10^7)^2-(2\times 10^7)^2=2a(0.019)

16\times 10^{14}-4\times 10^{14}=0.038a

0.038a=12\times 10^{14}

a=\frac{12}{0.038}\times 10^{14}=3.16\times 10^{16}m/s^2

q=1.6\times 10^{-19} C

Mass of electron,m=9.1\times 10^{-31} kg

E=\frac{ma}{q}

Substitute the values

E=\frac{9.1\times 10^{-31}\times 3.16\times 10^{16}}{1.6\times 10^{-19}}

E=1.8\times 105 N/C

You might be interested in
What’s 2.3 miles into kilometers
True [87]
3.701 kilometers hope that helps
8 0
2 years ago
The three forces acting on a hot-air balloon that is moving vertically are its weight, the force due to air resistance and the u
Aleksandr [31]
Let
upthrust = T
weight = W = mg
Air resistance = F

When balloon is descending, air resistance acts upwards (positive)
By Newton's first law, the net force on the balloon is zero, or
T+F-W=0......................(1)

Let w=weight of material dumped so that balloon now travels upwards at constant speed.
Air resistance acts against motion, namely downwards.
The Newton's equation now reads
T-F-(W-w)=0................(2)

Subtract (2) from (1)
T+F-W - (T-F-(W-w)) = 0
Solve for w
w=2F, or
the WEIGHT of material to be released equals twice the resistance of air.
3 0
2 years ago
How, if at all, would the equations written in Parts C and E change if the projectile was thrown from the cliff at an angle abov
sveta [45]

Answer:

x = v₀ cos θ   t ,   y = y₀ + v₀ sin θ t - ½ g t2

Explanation:

This is a projectile launch exercise, in this case we will write the equations for the x and y axes

Let's use trigonometry to find the components of the initial velocity

              sin θ = v_{oy} / v₀

              cos θ = v₀ₓ / v₀

              v_{y} = v_{oy} sin θ

              v₀ₓ = vo cos θ

now let's write the equations of motion

X axis

         x = v₀ₓ t

         x = v₀ cos θ   t

        vₓ = v₀ cos θ

Y axis

        y = y₀ + v_{oy} t - ½ g t2

        y = y₀ + v₀ sin θ t - ½ g t2

        v_{y} = v₀ - g t

       v_{y} = v₀  sin θ - gt

        v_{y}^{2} = v_{oy}^2 sin² θ - 2 g y

As we can see the fundamental change is that between the horizontal launch and the inclined launch, the velocity has components

7 0
2 years ago
The famous cliff divers of Acapulco leap from a perch 35 m above the ocean. How fast are they moving when they reach the surface
Rus_ich [418]

1) 26.2 m/s

The mechanical energy of the divers at any point of their vertical motion is sum of the kinetic energy and the gravitational potential energy:

E=K+U = \frac{1}{2}mv^2 + mgh

where

m is the mass of the diver

v is the speed

g = 9.8 m/s^2 is the acceleration due to gravity

h is the height above the water

When the diver is on the cliff, v = 0 (he is at rest), so K=0 and the initial mechanical energy is just potential energy:

E_i = mgh

where h=35 m is the height of the cliff.

When the diver hits the water above, h = 0, so U=0 and the final mechanical energy is just kinetic energy:

E_f = \frac{1}{2}mv^2

since the total mechanical energy is conserved, we have

E_i = E_f\\mgh = \frac{1}{2}mv^2

And solving the equation for v, we find the speed when they reach the surface of the water:

v=\sqrt{2gh}=\sqrt{2(9.8 m/s^2)(35 m)}=26.2 m/s

2) It is converted into thermal energy of the water

When the diver enters the water, he suddenly feels another force acting against the motion of the diver: the resistance of the water. The resistance of the water acts upward, slowing down the diver until he stops.

In this process, the speed of the diver (v) decreases, and therefore the kinetic energy of the diver decreases as well, until it becomes zero.

However, this does not mean that the conservation of energy has been violated. In fact, the kinetic energy of the diver has been converted into thermal energy of the molecules of water surrounding the diver.

8 0
2 years ago
The actions of an employee are not attributable to the employer if the employer has not directly or indirectly encouraged the em
zepelin [54]

Answer:    the answer is d

Explanation: there are not more than 10 violations  within a twelve month period hope this helps

4 0
2 years ago
Other questions:
  • How much total work is done by the force in lifting the elevator from 0.0 m to 9.0 m?
    8·1 answer
  • Jupiter is 317 times more massive than the Earth. An astronaut on Jupiter would _____. weigh less than on Earth weigh more than
    5·1 answer
  • A large ant is standing on the middle of a circus tightrope that is stretched with tension Ts. The rope has mass per unit length
    15·1 answer
  • A box sliding on a horizontal frictionless surface encounters a spring attached to a rigid wall and compresses the spring by a c
    9·1 answer
  • To a cyclist riding due west with a speed of 4 m/s a wind appears to
    9·1 answer
  • A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
    15·1 answer
  • Two objects attract each other gravitationally. If the mass of each object doubles, how does the gravitational force between the
    5·1 answer
  • Suppose the dim-looking headlight on the right is actually a small light on the front of a bicycle. What can you conclude about
    15·1 answer
  • A hockey puck with a mass of 0.16 kg travels at a velocity of 40 m/s toward a goalkeeper. The goalkeeper has a mass of 120 kg an
    9·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!