answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
2 years ago
12

A 1.1-kg uniform bar of metal is 0.40 m long and has a diameter of 2.0 cm. When someone bangs one end of this bar, a 1.5 MHz sho

ck wave is travels along the length of the bar and reaches the other end in 0.12 ms. What is the wavelength of the shock wave in the metal?
Physics
1 answer:
lyudmila [28]2 years ago
6 0

Answer:

\lambda = 2.22\times 10^{-3}\ m

Explanation:

Given,

mass of the bar = 1.1 Kg

length of rod, l = 0.40 m

diameter of the rod, d = 2 cm

frequency, f = 1.5 MHz

time, t = 0.12 ms

wavelength of the shock wave = ?

Speed of the wave =\dfrac{L}{t}=\dfrac{0.40}{0.12\times 10^{-3}}

   v = 3333.33 m/s

wavelength of the wave

\lambda = \dfrac{v}{f}= \dfrac{3333.33}{1.5\times 10^6}

\lambda = 2.22\times 10^{-3}\ m

You might be interested in
A ray of light crosses a boundary between two transparent materials. The medium the ray enters has a larger index of refraction.
Margarita [4]

Answer:

True, True, False, False, False, False.

Explanation:

The refraction index of a material is given by the formula n=c/v, where c is the speed of light in vacuum and v the speed of light in the material. If a ray of light crosses a boundary between two transparent materials and the medium the ray enters has a larger index of refraction it means that in this new medium the speed of light is smaller than on the other one, and then its wavelength is also reduced since f must remain the same (and \lambda=v/f), otherwise there is a discontinuity on number of vibrations per second, which cannot happen. So we know that:

1) The wavelength of the light decreases as it enters into the medium with the greater index of refraction. True.

2) The frequency of the light remains constant as it transitions between materials. True.

3) The speed of the light remains constant as it transitions between materials. False.

4) The speed of the light increases as it enters the medium with the greater index of refraction. False.

5) The frequency of the light decreases as it enters into the medium with the greater index of refraction. False.

6) The wavelength of the light remains constant as it transitions between materials.  False.

7 0
2 years ago
A ray of yellow light ( f = 5.09 × 1014 hz) travels at a speed of 2.04 × 108 meters per second in
SashulF [63]
Velocity = fλ

where f is frequency in Hz, and λ is wavelength in meters.

<span>2.04 * 10⁸ m/s =  5.09 * 10¹⁴  Hz   *  λ </span>

<span>(2.04 * 10⁸ m/s) / (5.09 * 10¹⁴  Hz ) = λ </span>

<span>4.007*10⁻⁷  m =  λ </span>

<span>The wavelength of the yellow light = 4.007*10⁻⁷  m<span> </span></span>
6 0
2 years ago
A tennis ball travelling at a speed of 46m/s with a mass of 58kg. Calculate the kinetic<br>energy​
Zanzabum

Answer:

its 1/2 the mass of the object times by its velocity ^ 2

7 0
2 years ago
A 1.2 kg ball moving due east at 40 m/s strikes a stationary 6.0 kg object. The 1.2 kg ball rebounds to the west at 25 m/s. What
RSB [31]
V_2' = v_1 + v_1'
So v_2' = 40 + -25
We have set east to be + and west -
Which gives us 15 m/s. So thats how fast the 6 kg object is going.
This is true for an elastic collision.
4 0
2 years ago
Two rigid rods are oriented parallel to each other and to the ground. The rods carry the same current in the same direction. The
bazaltina [42]

Answer:

The current in the rods is 171.26 A.

Explanation:

Given that,

Length of rod = 0.85 m

Mass of rod = 0.073 kg

Distance d = 8.2\times10^{-3}\ m

The rods carry the same current in the same direction.

We need to calculate the current

I is the current  through each of the wires then the force per unit length on each of them is

Using formula of force

\dfrac{F}{L}=\dfrac{\mu_{0}I^2}{2\pi d}

\dfrac{mg}{L}=\dfrac{\mu_{0}I^2}{2\pi d}

Where, m = mass of rod

l = length of rod

Put the value into the formula

I^2=\dfrac{mgd}{\mu L}

I^2=\dfrac{0.073\times9.8\times8.2\times10^{-3}}{2\times10^{-7}}

I=\sqrt{29331.4}

I=171.26\ A

Hence, The current in the rods is 171.26 A.

5 0
2 years ago
Other questions:
  • Fill in the blanks. The electrostatic force between two objects is proportional to the ____________________ of the distance ____
    5·2 answers
  • You throw a baseball straight up into the air with a speed of 24.5 m/s. How long does it take the baseball to reach its highest
    13·2 answers
  • Consider a force of 750 n (roughly the weight of an adult human). over what area (in cm2) would this force need to be applied in
    5·1 answer
  • Suppose you sketch a model of an atom using the ones here as a guide. How would you build a model that is ionized? How would you
    15·1 answer
  • Consider a very small hole in the bottom of a tank 17.0 cm in diameter filled with water to a heightof 90.0 cm. Find the speed a
    7·1 answer
  • A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
    12·1 answer
  • If a drop is to be deflected a distance d = 0.350 mm by the time it reaches the end of the deflection plate, what magnitude of c
    5·1 answer
  • Find the intensity in decibels [i(db)] for each value of i. normal conversation: i = 106i0 i(db) = power saw a 3 feet: i = 1011i
    15·2 answers
  • Two masses, each having a value of M, are vibrating vertically on a spring with a Hooke's law constant, k. At the lowest point o
    9·1 answer
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!