answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
1 year ago
12

A 1.1-kg uniform bar of metal is 0.40 m long and has a diameter of 2.0 cm. When someone bangs one end of this bar, a 1.5 MHz sho

ck wave is travels along the length of the bar and reaches the other end in 0.12 ms. What is the wavelength of the shock wave in the metal?
Physics
1 answer:
lyudmila [28]1 year ago
6 0

Answer:

\lambda = 2.22\times 10^{-3}\ m

Explanation:

Given,

mass of the bar = 1.1 Kg

length of rod, l = 0.40 m

diameter of the rod, d = 2 cm

frequency, f = 1.5 MHz

time, t = 0.12 ms

wavelength of the shock wave = ?

Speed of the wave =\dfrac{L}{t}=\dfrac{0.40}{0.12\times 10^{-3}}

   v = 3333.33 m/s

wavelength of the wave

\lambda = \dfrac{v}{f}= \dfrac{3333.33}{1.5\times 10^6}

\lambda = 2.22\times 10^{-3}\ m

You might be interested in
A sample of a gas has a volume of 639 cm3 when the pressure is 75.9 kPa. What is the volume of the gas when the pressure is incr
const2013 [10]

Answer:

388 cm^3

Explanation:

For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

pV=const.

which can also be rewritten as

p_1 V_1 = p_2 V_2

In our case, we have:

p_1 = 75.9 kPa is the initial pressure

V_1 = 639 cm^3 is the initial volume

p_2 = 125 kPa is the final pressure

Solving for V2, we find the final volume:

v_2 = \frac{p_1 V_1}{p_2}=\frac{(75.9)(639)}{125}=388 cm^3

7 0
2 years ago
Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p
worty [1.4K]

We have that The ratio U1/U2 of their potential energies due to their interactions with Q is

  • U1/U2=6
  • U1/U2=6

From the question we are told that

Question 1

Charge q1 is distance r from a positive point charge Q.

Question 2

Charge q2=q1/3 is distance 2r from Q.

Charge q1 is distance s from the negative plate of a parallel-plate capacitor.

Charge q2=q1/3 is distance 2s from the negative plate.

Generally the equation for the potential energy  is mathematically given as

U=\frac{-k*qQ}{r}

Therefore

The Equations of U1 and U2 is

For U1

U1=\frac{-k*q_1Q}{r}

For U2

U2=\frac{-k*q_1Q}{3*2r}

Since

U is a function of q and  q2=q1/3

Therefore

U1/U2=6

For Question 2

For U1

U1=\frac{-k*q_1Q}{s}\\\\For U2\\\\U2=\frac{-k*q_1Q}{3*2r}

Therefore

U1/U2=6

For more information on this visit

brainly.com/question/23379286?referrer=searchResults

7 0
1 year ago
A spring has a spring constant of 48 N/m. The end of the spring hangs 8 m above the ground. How much weight can be placed on the
Setler79 [48]
The answer is 96 N .....................................
7 0
2 years ago
Read 2 more answers
Yurem is pulling a wagon across the playground with a force of 10 N. He asks Elianna to help. She agrees and pushes the back of
salantis [7]

Answer:

22 N applied force

Explanation: Since they are both pushing the wagon in the same direction the force adds up.

7 0
2 years ago
Read 2 more answers
A girl moves quickly to the center of a spinning merry-go-round, traveling along the radius of the merry-go-round. Which of the
DochEvi [55]

Answer:

The angular speed of the system increases.

The moment of inertia of the system decreases.

Explanation:

As we know that the girl is going towards the center of the circle so here the moment of inertia of the girl is given as

I = mr^2

here we know that

r = position of the girl from the center of the disc

now we know that the girl is moving towards the center so its distance will continuously decreasing

So the moment of inertia of the girl will decrease

Now we know that that with respect to the center of the disc there is no torque on the disc + girl system

So here we can use angular momentum conservation

So we have

I\omega = constant

since moment of inertia is decreasing for the system

so angular speed will increase

3 0
2 years ago
Other questions:
  • Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?
    14·2 answers
  • An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
    15·2 answers
  • A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
    10·1 answer
  • A technician is working on an MRI machine. To test it, the technician turns on the MRI machine that produces a strong magnetic f
    15·1 answer
  • Explain how climbing a mountain is similar to hiking from the equator to one of the poles
    14·1 answer
  • De Vico Comet orbits the Sun every 74.0 years and has an orbital eccentricity of 0.96. Find the comet's average distance from th
    5·1 answer
  • An astronaut is floating happily outside her spaceship, which is orbiting the earth at a distance above the earths surface equal
    11·1 answer
  • A cubical shell with edges of length a is positioned so that two adjacent sides of one face are coincident with the +x and +y ax
    8·1 answer
  • A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
    14·1 answer
  • when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!