Answer:(a)891.64 N
(b)0.7
Explanation:
Mass of crate 
Crate slows down in 
initial speed 
inclination 
From Work-Energy Principle
Work done by all the Forces is equal to change in Kinetic Energy




change in kinetic energy

(b)Coefficient of sliding friction



and 


Body waves
Explanation:
A shear wave(S-wave) is a type of seismic body waves that shakes the ground back and forth perpendicular to the direction the wave is moving.
- Seismic waves are elastic waves usually generated when there is a disturbance within the earth.
- There are two types of seismic waves:
Surface waves
Body waves
- Body waves travel within the earth and they cause disturbances there. P and S waves are the two types of body waves that we have.
- Surface waves travels on the earth surface. They are the love and rayleigh waves. They are the ones that cause destruction on the earth surface during an earthquake.
Learn more:
Earthquake brainly.com/question/6520403
#learnwithBrainly
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Kinetic Energy = 1/2xmassx(velocity)^2
Input values;
K.E=1/2x7kgx(4m/s)^2
K.E.=56J
Answer:
Two possible points
<em>x= 0.67 cm to the right of q1</em>
<em>x= 2 cm to the left of q1</em>
Explanation:
<u>Electrostatic Forces</u>
If two point charges q1 and q2 are at a distance d, there is an electrostatic force between them with magnitude

We need to place a charge q3 someplace between q1 and q2 so the net force on it is zero, thus the force from 1 to 3 (F13) equals to the force from 2 to 3 (F23). The charge q3 is assumed to be placed at a distance x to the right of q1, and (2 cm - x) to the left of q2. Let's compute both forces recalling that q1=1, q2=4q and q3=q.





Equating


Operating and simplifying

To solve for x, we must take square roots in boths sides of the equation. It's very important to recall the square root has two possible signs, because it will lead us to 2 possible answer to the problem.

Assuming the positive sign
:




Since x is positive, the charge q3 has zero net force between charges q1 and q2. Now, we set the square root as negative



The negative sign of x means q3 is located to the left of q1 (assumed in the origin).