M1 descending
−m1g + T = m1a
m2 ascending
m2g − T = m2a
this gives :
(m2 − m1)g = (m1 + m2)a
a =
(m2 − m1)g/m1 + m2
= (5.60 − 2)/(2 + 5.60) x 9.81
= = 4.65m/s^2
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:
minimum power should be used to operate the air conditioner is 4000 W
Explanation:
given data
students n = 160
power p = 125 W
COP = 5.0
to find out
what minimum power should be used
solution
we know the COP formula that is given below
COP = students × power / minimum power
minimum power = n × p / COP
put all value
minimum power = n × p / COP
minimum power = 160 × 125 / 5
minimum power = 4000 W
minimum power should be used to operate the air conditioner is 4000 W
Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m