answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
2 years ago
8

Explain why is not advisable to use small values of I in performing an experiment on refraction through a glass prism?

Physics
1 answer:
MakcuM [25]2 years ago
3 0
The angle of refraction would be further less 
You might be interested in
A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
dem82 [27]

Answer:

The torque on the child is now the same, τ.

Explanation:

  • It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
  • In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
  • The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of  the mass of the child times the square of the distance to the center.
  • When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

       I_{to} = I_{d} + m*r^{2}  = m*\frac{r^{2}}{2} +  m*r^{2} = \frac{3}{2}*  m*r^{2} (1)

  • So, τ = 3/2*m*r²*α (2)
  • When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

       I_{t} = I_{d} + m*\frac{r^{2}}{4}   = m*\frac{r^{2}}{2} + m*\frac{r^{2}}{4}  = \frac{3}{4}*  m*r^{2} (3)

  • Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:

       τ = 3/4*m*r² * (2α) = 3/2*m*r²

        same result than in (2), so the torque remains the same.

7 0
2 years ago
How far could a rabbit run if it ran 36km/h for 5.0min?
Korolek [52]

3 kilometers, it is just 5/60 or 1/12 multiplied by 36.

4 0
2 years ago
Read 2 more answers
An object is dropped from rest into a pit, and accelerates due to gravity at roughly 10 m/s2. It hits the ground in 5 seconds. A
vitfil [10]

Answer:

Second pit is 375 m deeper compared to first pit.

Explanation:

We have equation of motion s = ut + 0.5at²

First object hits the ground after 5 seconds,

          Initial velocity, u = 0 m/s

         Acceleration, a = 10 m/s²

         Time, t = 5 s

    Substituting,

                  s = ut + 0.5 at²

                 s = 0 x 5 + 0.5 x 10 x 5²

                    s = 125 m

           Depth of pit 1 = 125 m

Second object hits the ground after 10 seconds,

          Initial velocity, u = 0 m/s

         Acceleration, a = 10 m/s²

         Time, t = 10 s

    Substituting,

                  s = ut + 0.5 at²

                 s = 0 x 10 + 0.5 x 10 x 10²

                    s = 500 m

           Depth of pit 2 = 500 m

Difference in depths = 500 - 125 = 375 m

Second pit is 375 m deeper compared to first pit.

7 0
2 years ago
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
2 years ago
An electric heater draws a steady current = 20.0 A on a 120-V line. (a) Calculate how much power does it require.
babymother [125]

Answer:

The heater power required is 2400 W. The power in the heater can be calculated as the product of the voltage line and the steady current:

P=V.I

P=120 V * 20 A = 2400 VA = 2400 W

Explanation:

8 0
2 years ago
Other questions:
  • A 90-g bead is attached to the end of a 60-cm length of massless string. The other end of the string is held at point O, which i
    10·1 answer
  • Traffic officials indicate, it takes longer to ______ when you drive fast.
    12·2 answers
  • When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
    8·2 answers
  • A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
    5·2 answers
  • In a sample of 18-karat gold, 75 percent of the total mass is pure gold, while the rest is typically 16 percent silver and 9 per
    15·1 answer
  • What is the formula for calculating the efficiency of a heat engine? Efficiency = StartFraction T Subscript h Baseline minus T S
    7·1 answer
  • In the past, salmon would swim more than 1130 km (700 mi) to spawn at the headwaters of the Salmon River in central Idaho. The t
    7·1 answer
  • 2. Which are most closely associated with an element on the periodic table?
    15·2 answers
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • A green ball has a mass of 0.525 kg and a blue ball has a mass of 0.482 kg. A croquet player strikes the green ball and it gains
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!