Answer:
The total mechanical energy does not change if the value of the mass is changed. That is, remain the same
Explanation:
The total mechanical energy of a spring-mass system is equal to the elastic potential energy where the object is at the amplitude of the motion. That is:
(1)
k: spring constant
A: amplitude of the motion = 2.0cm
As you can notice in the equation (1), the total mechanical energy of the system does not depend of the mass of the object. It only depends of the amplitude A and the spring constant.
Hence, if you use a mass of 0.40kg the total mechanical energy is the same as the obtained with a mas 0.20kg
Remain the same
Answer:
1/2
Explanation:
We need to make a couple of considerations but basically the problem is solved through the conservation of energy.
I attached a diagram for the two surfaces and begin to make the necessary considerations.
Rough Surface,
We know that force is equal to,



Matching the two equation we have,


Applying energy conservation,





Frictionless surface




Given the description we apply energy conservation taking into account the inertia of a sphere. Then the relation between
and
is given by


Answer: 0.98m
Explanation:
P = -74 mm Hg = 9605 Pa = 9709N/m^2
= 9605 kg m/s^2/m^2
density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3
Pressure equation: P = rho g h
h = P/(rho g)
h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)
h = 0.98 m
0.98m is the maximum depth he could have been.
Answer:
0.002925 m
Explanation:
Lt = LO(1 +α Δt ) here Lt is total length Lo is original length α is coefficient of linear expansion and Δt is change in temperature
<h2>for aluminium</h2>
α=25×10^-6
Lt = 5(1+25×10^-6×(70-20))
Lt = 5 (1+25×10^-6×50)
Lt = 5 ( 1+0.00125)
Lt = 5×1.00125
Lt =5.00625 m
<h2>for nickel </h2>
α=13.3×10^-6
Lt =5(1+13.3×10^-6×50)
Lt = 5(1+0.000665)
Lt =5.003325 m
hence difference in length =5.00625-5.003325
= 0.002925 m
Answer:
0.00066518 Nm
Explanation:
v = Velocity = 1.2 m/s
r = Distance to head = 2.3 cm
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 2.4 s
Angular speed is given by

From equation of rotational motion

Torque

The torque of the motor is 0.00066518 Nm