answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergey [27]
1 year ago
13

An amusement park ride raises people high into the air, suspends them for a moment, and then drops them at a rate of free-fall a

cceleration. Is a person in this ride experiencing apparent weightlessness, true weightlessness, or neither? Explain.
Physics
2 answers:
o-na [289]1 year ago
5 0
An object experiences true weightlessness when the net force of all gravitational forces acting upon the object is zero. In this case, the gravitational force exerted by the earth on the people that are on the park ride while it's free falling never ceases to act on the people. If the person on the ride were in a case of true weightlessness then they would not fall in any direction in the first place. The answer is the apparent weightlessness.
blsea [12.9K]1 year ago
3 0

Answer: apparent weighlessness.


Explanation:


1) Balance of forces on a person falling:


i) To answer this question we will deal with the assumption of non-drag force (abscence of air).


ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).


iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).


2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.


3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.


Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.

You might be interested in
Specific agricultural uses of water are all of the following except _____. evaporation growing crops raising livestock cleaning
Tamiku [17]
Evaporation.............
5 0
2 years ago
Read 2 more answers
A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
mote1985 [20]

Answer:

a) When its length is 23 cm, the elastic potential energy of the spring is

0.18 J

b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

Explanation:

Hi there!

a) The elastic potential energy (EPE) is calculated using the following equation:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = stretched lenght.

Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).

First, let´s convert the spring constant units into N/m:

4 N/cm · 100 cm/m = 400 N/m

EPE = 1/2 · 400 N/m · (0.03 m)²

EPE = 0.18 J

When its length is 23 cm, the elastic potential energy of the spring is 0.18 J

b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:

EPE = 1/2 · 400 N/m · (0.06 m)²

EPE = 0.72 J

When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

7 0
2 years ago
A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then
Elan Coil [88]

Answer:

A) W_{ff} =-744.12J

B) F_f=-W_{ff}*sin\theta /hy = 112.75N

C) F_{f2}=207.58N

Explanation:

This question is incomplete. The full question was:

<em>A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is vf = 6.2 m/s.  </em>

<em>Part (a) Write an expression for the work, Wf, done by the friction force between the ramp and the skateboarder in terms of the variables given in the problem statement.  </em>

<em>Part (b) The ramp makes an angle θ with the ground, where θ = 30°. Write an expression for the magnitude of the friction force, fr, between the ramp and the skateboarder.  </em>

<em>Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vf onto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgrass in newtons, between the skateboarder and the grass.</em>

For part A), we make a balance of energy to calculate the work done by the friction force:

W_{ff}=\Delta E

W_{ff}=1/2*m*vf^2-m*g*hy

W_{ff}=-744.12J

For part B), we use our previous value for the work:

W_{ff}=-F_f*(hy/sin\theta)   Solving for friction force:

F_f=-W_{ff}*sin\theta /hy

F_f=112.75N

For part C), we first calculate the acceleration by kinematics and then calculate the module of friction force by dynamics:

Vf^2=Vo^2+2*a*d

Solving for a:

a=-3.844m/s^2

Now, by dynamics:

|F_f|=|m*a|

|F_f|=207.58N

8 0
2 years ago
A machine produces photo detectors in pairs. Tests show that the first photo detector is acceptable with probability 3/5. When t
klasskru [66]

Answer:

a.a. \ \frac{7}{25}

b.\ \ \ P(D_1D_2)=\frac{6}{25}

Explanation:

a. Find the probability that exactly one photo detector of a pair is acceptable:

Let A_i=i^{th} photo is accepted and the probability D_i=i^{th} is defected.

Therefore:

P(A_i)=3/5,\ P(A_2|A_1)=4/5,\ \ P(A_2|D_1)=2/5\\\\\\=P(A_1D_2)+P(D_1A_2)\\\\=\frac{3}{5}\times\frac{1}{5}+\frac{2}{5}\times\frac{2}{5}\\\\=\frac{7}{25}

#The probability of exactly one photo detector of a pair is accepted is 7/25

b.Find the probability that both photo detectors in a pair are defective,P(D1D2):

P(D_1D_2)=\frac{2}{5}\times \frac{3}{5}\\\\=\frac{6}{25}

Hence, from out tree diagram,the probability that both photo detectors in a pair are defective is 6/25

4 0
2 years ago
An object has a position given by r = [2.0 m + (2.00 m/s)t] i + [3.0 m − (1.00 m/s^2)t^2] j, where quantities are in SI units. W
lidiya [134]

Answer: 1 m/s

Explanation:

We have an object whose position r is given by a vector, where the components X and Y are identified by the unit vectors i and j (where each unit vector is defined to have a magnitude of exactly one):

r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j

On the other hand, velocity is defined as the variation of the position in time:

V=\frac{dr}{dt}

This means we have to derive r:

\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} t) j This is the velocity vector

And when t=2s the velocity vector is:

\frac{dr}{dt}=(2 m/s) i - (\frac{1}{2} m/s^{2} (2 s)) j

\frac{dr}{dt}=2 m/s i - 1m/s j This is the velocity vector at 2 seconds

However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed S:

S=\sqrt {-1 m/s j + 2 m/s i}

S=\sqrt {1 m/s}

Finally:

S=1 m/s This is the speed of the object at 2 seconds

6 0
1 year ago
Other questions:
  • Consider a solid, rigid spherical shell with a thickness of 100 m and a density of 3900 kg/m3 . the sphere is centered around th
    5·2 answers
  • PLEASE ANSWER ACCURATELY DO NOT GUESS PLEASE AND THANK YOU
    10·1 answer
  • A system expands from a volume of 1.00 l to 2.00 l against a constant external pressure of 1.00 atm. what is the work (w) done b
    11·2 answers
  • What is the change in entropy of helium gas with total mass 0.135 kg at the normal boiling point of helium when it all condenses
    13·1 answer
  • Richardson pulls a toy 3.0 m across the floor by a string, applying a force of0.50 N. During the first meter, the string is para
    10·1 answer
  • Determine the magnitude and sense (direction) of the current in the 500-latex: \omega ω resistor when i = 30 ma.
    7·1 answer
  • Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
    13·1 answer
  • when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
    11·1 answer
  • 5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
    14·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!