Answer:
Yes we can find the initial velocity of car without finding acceleration.
u = 10 m/s.
Explanation:
Given that
s=20 m
Car takes 4 s to come in rest.
We know that when acceleration is constant then we can apply motion equation
----------1
------2
From equation 1 and 2

So we can say that

Given that the velocity of car at final condition will be zero (v=0)


From the above equation we can find the initial velocity of car without finding the acceleration

u = 10 m/s
Answer:
Sample Response: The windsurfer, his board, and the air and water around him are all made of matter. That matter is made up of very small particles called atoms.
Explanation:
i just finished lesson on edgenuity :)
Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N
We use the kinematic equations,
(A)
(B)
Here, u is initial velocity, v is final velocity, a is acceleration and t is time.
Given,
,
and
.
Substituting these values in equation (B), we get
.
Therefore from equation (A),

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s
Answer:
Expression of work done is

Work done to move the sled is given as 1.94 J
Explanation:
As we know that the formula of work done is given as

here we know that
F = 6 N
d = 0.4 m

so we will have

