Answer:
The value is 
Explanation:
From the question we are told that
The Coulomb constant is 
The charge on the electron/proton is 
The mass of proton 
The mass of electron is 
Generally for the electron to be held up by the force gravity
Then
Electric force on the electron = The gravitational Force
i.e




Answer :
The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.
Explanation:
Given,
Atomic mass of silver = 107.87 g/mol
Density of silver = 10.35 g/cm^3
Converting to g/m^3,
= 10.35 g/cm^3 × 10^6cm^3/m^3
= 10.35 × 10^6 g/m^3
Avogadro's number = 6.022 × 10^23 atoms/mol
Fraction of lattice sites that are vacant in silver = 1 × 10^-6
Nag = (Na * Da)/Aag
Where,
Nag = Total number of lattice sites in Ag
Na = Avogadro's number
Da = Density of silver
Aag = Atomic weight of silver
= (6.022 × 10^23 × (10.35 × 10^6)/107.87
= 5.778 × 10^28 atoms/m^3
The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6
= 5.778 × 10^22/m^3.
As he lifts the sack to his chest from the floor
To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.
The first movement of 25m west is already split. x = -25m, y = 0m.
The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m
Then, we add the two x and two y displacements to get the total displacement in each direction.
x = -25m + 22.5m = -2.5m
y = 0m + 39.0m
We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m
And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3
Therefore, the total displacement is 39.08m [W86.3N]
Answer:
$ 18.75
Explanation:
given,
capacity of the Dave’s car = 12 gallons
Assuming that the tank is 3/8 full before
Cost of gas per gallon = $2.50 per gallon of gas
Volume Dave have to fill
=
=
of full tank
=
volume Dave have to fill = 7.5 gallons
total money Dave spent
= 7.5 gallons x $2.50
= $ 18.75
Dave have to spend $ 18.75 to fill tank to it capacity.