When you have a warm shower, you create steam. So when the warm steam flows in the air and starts to be in contact with a cold surface, it condenses causing a mist to form on the cold surface. The heated mirror is warm so, when, the steam is in contact with the mirror condensation is prevented. Therefore, the mirror stays clear.
The wavelength emitted is indirectly proportional to the difference in the change in the energy level. For the wavelength 278 nm the change in energy level is significantly high. Further change in energy level is indicated by 454nm light but the difference in energy level for this wavelength to be emitted is not greater than the previous one. There is a possibility that these subsystems have now very low energy which should result in wavelengths ranging from 700 to 900 nm. There is another possibility that there is some metastable subsystems in the system which may cause LASER emission.
The amount of work done can be solved using the formula:
Work = Force x Distance = Change in kinetic energy
Kinetic energy can be solved using the formula: KE = (1/2)*m*v^2
So, change in kinetic energy = (1/2)*m*(Vf)^2 - (1/2)*m*(Vo)^2
Where:
Vf = final velocity = 90 kph = 25 m/s
Vo = initial velocity = 72 kph = 20 m/s
substituting the given values:
Work = (1/2)*2500*(25^2) - (1/2)*2500*(20^2) = 281250 J, which can also be expressed as 2.8 x 10^5 Joules.
Among the choices, the correct answer is A.
Answer:
A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.
Explanation:
Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.
It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.
In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.
Answer:
False
Explanation:
The second you let go its gonna release kinetic energy that's why it's potential