answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
2 years ago
15

A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the

center of mass of the bent wire?
Physics
2 answers:
Murrr4er [49]2 years ago
8 0

Answer:TL;DR: 3.535 cm

Explanation:

Xcm = ΣxMoments/ΣMasses = (10*0 + 10*5)/(10+10) = 50/20 = 2.5 cm

by symmetry,

Ycm = 2.5 cm

The distance D from the point Xcm,Ycm to the origin is D = √(2.5²+2.5²) = 3.535 cm

zlopas [31]2 years ago
5 0

Answer:

the center of mass is 7.07 cm apart from the bend

Explanation:

the centre of mass of a wire of length L is L/2 ( assuming uniform density). Then initially the x coordinate of the centre of mass is

x₁ = L/2 = 20 cm /2 = 10 cm

when the wire is bent in a right angle the coordinates of the new centre of mass will be

x₂ = L₂/2

y₂=  L₂/2

where L₂ is the length of the horizontal piece and vertical piece . Then L₂=L/2

x₂ = L₂/2 = L/4 = 20 cm/4 = 5 cm

y₂= L₂/2 = L/4 = 20 cm/4 = 5 cm

x₂=y₂=X

locating the bend in the origin (0,0) the distance to the centre of mass is

d = √(x₂²+y₂²) = √(2X²) = √2*X=√2*5cm = 7.07 cm

d = 7.07 cm

You might be interested in
A 12 kg box sliding on a horizontal floor has an initial speed of 4.0 m/s. The coefficient of friction bctwecn thc box and the f
Hitman42 [59]

Answer:

(D) 96 kg-m/s

Explanation:

Let's start off by first calculating the normal force between the box and the floor.

This will be:

Normal Force = 12 * 9.81 = 117.72 N

We can now use the friction equation to find the frictional force on the box when it is moving:

Frictional force = Coefficient of friction * Normal Force

Frictional force = 0.4 * 117.72 = 47.09 N

Finally, since we have the force on the box, we can find the acceleration:

F = Mass * Acceleration

47.09 = 12 * Acceleration

Acceleration = 3.92 m/s^2

Final speed after 2 seconds:

V=U+a*t

V = 4 +(-3.92)*(2)

V= -3.84 m/s

Since we know the initial and final speeds, we can calculate the change in momentum:

Change in momentum = Final Momentum - Initial Momentum

Change in momentum = 3.84*12-(-4)*12

Change in momentum = 94.08 kg*m/s

Thus we can see that option (D) is the closest answer.

6 0
1 year ago
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
2 years ago
As a car drives with its tires rolling freely without any slippage, the type of friction acting between the tires and the road i
Kitty [74]

Answer:

<em>B</em><em>.</em><em> </em><em>Kinetic</em><em> </em><em>friction</em><em> </em>

Explanation:

This is definitely the correct answer because kinetic friction acts when an object is in motion and it allows the object to move without slipping, etc

<em>ALSO</em><em>,</em><em> </em><em>PLEASE DO</em><em> </em><em>MARK</em><em> </em><em>ME AS</em><em> </em><em>BRAINLIEST UWU</em><em> </em>

<em>Bonne</em><em> </em><em>journée</em><em> </em><em>;</em><em>)</em><em> </em>

6 0
1 year ago
Read 2 more answers
A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
mart [117]

Explanation:

It is given that,

The horizontal speed of a cliff diver, v_x=3.6\ m/s

It reaches the water below 2.00 s later, t = 2 s

Let d_x is the distance where the diver hit the water. It can be calculated as follows :

d_x=v_x\times t\\\\=3.6\times 2\\\\=7.2\ m

Let d_y is the height of the cliff. It can be calculated using second equation of motion as follows :

d_y=u_yt+\dfrac{1}{2}gt^2\\\\d_y=\dfrac{1}{2}\times 9.8\times 2^2\\\\=19.6\ m

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.

8 0
1 year ago
At a certain instant after jumping from the airplane A, a skydiver B is in the position shown and has reached a terminal (consta
Lubov Fominskaja [6]

Answer:

a=2330

b= 0.223secs

Explanation:

pb=2330m

t=0.223secs

6 0
1 year ago
Other questions:
  • A cheetah can run at 30 m/s, but only for about 12s. How far will it run in that time
    12·1 answer
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • Military specifications often call for electronic devices to be able to withstand accelerations of 10 g. to make sure that their
    9·1 answer
  • An ac generator has a maximum output emf of 215 V. What is the rms potential difference?
    14·1 answer
  • A 4.0 Ω resistor, an 8.0 Ω resistor, and a 12.0 Ω resistor are connected in parallel across a 24.0 V battery. What is the equiva
    14·2 answers
  • A horizontal uniform meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging from it at the 20-cm mark and a 0.30
    8·2 answers
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
  • An aircraft acceleration from 100m/s to 300m/s in 100 s what is acceleration​
    15·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
  • A satellite that orbits Earth with a speed of v0 must be in an orbit of radius 8RE to maintain a circular orbit, where RE is the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!