answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
2 years ago
8

A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the

same instant the firecracker begins to explode into two pieces, "top" and "bottom", with masses mtop = 1 kg and mbottom=2 kg. At the end of the explosion (t = 0.6 s), the top piece is moving upward with speed 6 m/s The mass of the explosive substance is negligible in comparison to the mass of the two pieces.
a) Determine the magnitude of the net force on the firecracker system before the explosion. (use g=10). Explain.

I said f=m*a=(3)(10)= 30N

b) Determine the magnitude of the net force on the firecracker system during the explosion.

I said the net force would still be 30 N but I'm not sure.

c) Determine the magnitude and reaction of the net impulse on the firecracker system during the explosion (from t=0.4 to t=0.6). Explain.

I did p=m*v=(30)(0.2)=6 but I'm not sure if this is right

d) Use the impulse momentum theorem to determine the change in magnitude and direction of momentum of the firecracker system during the explosion.

Draw a vector diagram for initial, change, and final momentum of the top, bottom, and system as a whole.
Physics
1 answer:
olga2289 [7]2 years ago
3 0

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

You might be interested in
When a car drives along a "washboard" road, the regular bumps cause the wheels to oscillate on the springs. (What actually oscil
marishachu [46]

Answer:

a) 40,000 N/m

b) f = 6.37 Hz

c) v = 4,8 m/s

Explanation:

part a)

First in order to estimate the spring constant k, we need to know the expression or formula to use in this case:

k = ΔF / Δx

Where:

ΔF: force that the men puts in the car, in this case, the weight.

Δx: the sinking of the car, which is 2 cm or 0.02 m.

With this data, and knowing that there are four mens, replace the data in the above formula:

W = 80 * 10 = 800 N

This is the weight for 1 man, so the 4 men together would be:

W = 800 * 4 = 3200 N

So, replacing this data in the formula:

k = 3200 / 0.02 = 160,000 N/m

This means that one spring will be:

k' = 160,000 / 4 = 40,000 N/m

b) An axle and two wheels has a mass of 50 kg, so we can assume they have a parallel connection to the car. If this is true, then:

k^n = 2k

To get the frequency, we need to know the angular speed of the car with the following expression:

wo = √k^n / M

M: mass of the wheel and axle, which is 50 kg

k = 40,000 N/m

Replacing the data:

wo = √2 * 40,000 / 50 = 40 rad/s

And the frequency:

f = wo/2π

f = 40 / 2π = 6.37 Hz

c) finally for the speed, we have the time and the distance, so:

V = x * t

The only way to hit bumps at this frequency, is covering the gaps of bumping, about 6 times per second so:

x: distance of 80 cm or 0.8 m

V = 0.8 * 6 =

V = 4.8 m/s

5 0
2 years ago
A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
san4es73 [151]

Answer:

16,18,22

Or

1,3,7

Explanation:

The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation

8 0
2 years ago
An astronaut takes what he measures to be a 10-min nap in a space station orbiting Earth at 8000 m/s. A signal is sent from the
svet-max [94.6K]

Answer:

longer than

Explanation:

given,

time of nap = 10 min

speed of orbiting earth = 8000 m/s

c is the speed of light

using the equation of time dilation

t' = \dfrac{t}{\sqrt{1-\dfrac{v^2}{c^2}}}

now inserting all the values

t' = \dfrac{10}{\sqrt{1-\dfrac{8000^2}{3\times 10^8)^2}}}

t' = \dfrac{10}{0.9999}

t' = 10.001 s

on solving the above equation we will get a value greater than 10minutes.

hence, On earth time of nap measured will be longer than 10 min

3 0
2 years ago
"In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression
zavuch27 [327]

Answer:

The value of R is 1.72\times10^{11}\ m.

(B) is correct option.

Explanation:

Given that,

In analyzing distances by apply ing the physics of gravitational forces, an astronomer has obtained the expression

R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}

We need to calculate this for value of R

R=\sqrt{\dfrac{1}{(\dfrac{1}{140\times10^{9}})^2-(\dfrac{1}{208\times10^{9}})^2}}

R=1.89\times10^{11}\ m

So, The nearest option of the value of R is 1.72\times10^{11}\ m

Hence, The value of R is 1.72\times10^{11}\ m.

6 0
2 years ago
The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
trapecia [35]

Answer:

The moon region

Explanation:

This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.

5 0
2 years ago
Read 2 more answers
Other questions:
  • A 10-kg dog is running with a speed of 5.0 m/s. what is the minimum work required to stop the dog in 2.40 s?
    7·1 answer
  • A future use of space stations may be to provide hospitals for severely burned persons. it is very painful for a badly burned pe
    13·1 answer
  • Identify the method of thermal energy transfer at work in hot air balloons. Explain how thermal energy is transferred in this sc
    14·2 answers
  • A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
    12·2 answers
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m>s relative to an orbiting space shuttle
    10·1 answer
  • The weight of a 630 g piece of ham is _____.
    9·1 answer
  • Why are fossil fuels considered nonrenewable resources if they are still forming beneath the surface today?
    5·1 answer
  • A punted football is observed to have velocity components vhorizontal = 15 m/s to the right and vvertical = 1.25 m/s directed do
    6·1 answer
  • a. For a spring-mass oscillator, if you double the mass but keep the stiffness the same, by what numerical factor does the perio
    12·1 answer
  • A small rivet connecting two pieces of sheet metal is being clinched by hammering. Determine the impulse exerted on the rivet an
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!