answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
2 years ago
8

A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the

same instant the firecracker begins to explode into two pieces, "top" and "bottom", with masses mtop = 1 kg and mbottom=2 kg. At the end of the explosion (t = 0.6 s), the top piece is moving upward with speed 6 m/s The mass of the explosive substance is negligible in comparison to the mass of the two pieces.
a) Determine the magnitude of the net force on the firecracker system before the explosion. (use g=10). Explain.

I said f=m*a=(3)(10)= 30N

b) Determine the magnitude of the net force on the firecracker system during the explosion.

I said the net force would still be 30 N but I'm not sure.

c) Determine the magnitude and reaction of the net impulse on the firecracker system during the explosion (from t=0.4 to t=0.6). Explain.

I did p=m*v=(30)(0.2)=6 but I'm not sure if this is right

d) Use the impulse momentum theorem to determine the change in magnitude and direction of momentum of the firecracker system during the explosion.

Draw a vector diagram for initial, change, and final momentum of the top, bottom, and system as a whole.
Physics
1 answer:
olga2289 [7]2 years ago
3 0

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

You might be interested in
7. Imagine you are pushing a 15 kg cart full of 25 kg of bottled water up a 10o ramp. If the coefficient of friction is 0.02, wh
pentagon [3]

Answer:

The frictional force needed to overcome the cart is 4.83N

Explanation:

The frictional force can be obtained using the following formula:

F= \mu R

where \mu is the coefficient of friction = 0.02

R = Normal reaction of the load = mgcos\theta = 25 \times 9.81 \times cos 10 = 241.52N

Now that we have the necessary parameters that we can place into the equation, we can now go ahead and make our substitutions, to get the value of F.

F=0.02 \times 241.52N

F = 4.83 N

Hence, the frictional force needed to overcome the cart is 4.83N

4 0
2 years ago
Max and Jimmy want to jump on a trampoline. Max begins jumping in a steady pattern, making small waves in the trampoline. Jimmy
mylen [45]

Answer:

x_total = (A + B) cos (wt + Ф)

we have the sum of the two waves in a phase movement

Explanation:

In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.

         Max

               x₁ = A cos (wt + Ф)

         Jimmy

              x₂ = B cos (wt + Ф)

         

total movement

             x_total = (A + B) cos (wt + Ф)

 Therefore we have the sum of the two waves in a phase movement

8 0
2 years ago
An object begins at position x = 0 and moves one-dimensionally along the x-axis witļi a velocity v
Liula [17]

Answer:

The answer is "between 20 s and 30 s".

Explanation:

Calculating the value of positive displacement:

\ (x_{+ve}) = \frac{1}{2} \times 15 \times  20 \\\\

          = \frac{1}{2} \times 300 \\\\=  150 \\\\

Calculating the value of negative displacement upon the time t:

(x_{-ve}) = \frac{1}{2} \times 5 \times 20- 20(t-20) \\\\

          = \frac{1}{2} \times 100- 20t+ 400 \\\\= 50- 20t+ 400 \\\\

\to X= X_{+ve} + X_{-ve} \\\\

\to  150 - 50 -20t+400 =0\\\\\to 100 -20t+400 =0 \\\\\to 500 -20t =0\\\\\to 20t =500 \\\\\to t=\frac{500}{20}\\\\\to t=\frac{50}{2}\\\\\to t= 25

That's why its value lie in "between 20 s and 30 s".

6 0
2 years ago
What is the thickness required of a masonry wall having thermal conductivity 0.75 W/m K if the heat rate is to be 80% of the hea
Leya [2.2K]

Answer:

the thickness required of a masonry wall L = 375mm

Explanation:

The detailed steps and appropriate use of fourier's law of heat conduction is as shown in the attached file.

5 0
2 years ago
A car is pulled with a force of 10,000 N. The car's mass is 1267 kg. But, the car covers 394.6 m in 15 seconds
solong [7]

A. Formula: F=ma or F/m=a

10,000N/1,267kg≈7.9m/s^{2}

B. Formula: a=\frac{V-V_{0} }{t} and s=d/t

speed= 394.6/15

s=26.3m/s

a=\frac{26.3-0}{15}

a=1.75m/s^{2}

C. 7.9-1.75=difference of 6.15m/s^{2}

D. The force that most likely caused this difference is friction forces

3 0
2 years ago
Read 2 more answers
Other questions:
  • What are the approximate boiling points for the c2, c4, c6, and c8 alkanes?
    8·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • A wire in a uniform magnetic field of 0.350 T carries a current of 3.50 A. If the magnitude of the magnetic force per unit lengt
    13·1 answer
  • A red cross helicopter takes off from headquarters and flies 120 km at 70 degrees south of west. There it drops off some relief
    9·1 answer
  • A student is conducting a physics experiment and rolls four different-
    7·1 answer
  • The flowers of the bunchberry plant open with astonishing force and speed, causing the pollen grains to be ejected out of the fl
    9·1 answer
  • Consider a vacuum-filled parallel plate capacitor (no dielectric material between the plates). What is the ratio of conduction c
    11·1 answer
  • Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m
    7·1 answer
  • A solid conducting sphere of radius 5.00 cmcarries a net charge. To find the value of the charge, you measure the potential diff
    9·1 answer
  • A balloon tied up with a wooden piece is moving upward with velocity of 15m/s. At a height of 300m above the ground, the wooden
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!