answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
2 years ago
8

A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the

same instant the firecracker begins to explode into two pieces, "top" and "bottom", with masses mtop = 1 kg and mbottom=2 kg. At the end of the explosion (t = 0.6 s), the top piece is moving upward with speed 6 m/s The mass of the explosive substance is negligible in comparison to the mass of the two pieces.
a) Determine the magnitude of the net force on the firecracker system before the explosion. (use g=10). Explain.

I said f=m*a=(3)(10)= 30N

b) Determine the magnitude of the net force on the firecracker system during the explosion.

I said the net force would still be 30 N but I'm not sure.

c) Determine the magnitude and reaction of the net impulse on the firecracker system during the explosion (from t=0.4 to t=0.6). Explain.

I did p=m*v=(30)(0.2)=6 but I'm not sure if this is right

d) Use the impulse momentum theorem to determine the change in magnitude and direction of momentum of the firecracker system during the explosion.

Draw a vector diagram for initial, change, and final momentum of the top, bottom, and system as a whole.
Physics
1 answer:
olga2289 [7]2 years ago
3 0

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

You might be interested in
Lorenzo is making a prediction. “I learned that nonmetals increase in reactivity when moving from left to right. So I predict th
nadezda [96]
That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.

The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
6 0
2 years ago
Read 2 more answers
Your eye is designed to work in air. Surrounding it with water impairs its ability to form images. Consequently, scuba divers we
grin007 [14]

Answer:

Check the explanation

Explanation:

A) There are two important angles within the plastic: the angle immediately after the first refraction (the water/plastic interface) and the angle immediately before the second refraction (the plastic/air interface).

To find out how they relate, draw a picture with the path the light follows in the plastic and the normal to both surfaces.

Once you have labeled both angles, keep in mind that the surfaces are parallel, and thus their normal are parallel lines. An important theorem from geometry will give you the relationship between the angles.

Using Snell's Law,   θa = asin[(nw/na)*sin(θw)]

B) D = l/tan(θw)

C) D = l/θw

D) d/D = na/nw

8 0
2 years ago
Consider a bird that flies at an average speed of 10.7 m/sm/s and releases energy from its body fat reserves at an average rate
Wittaler [7]

Answer:

455165.278 m

Explanation:

P = Power = 3.7 W

v = Velocity = 10.7 m/s

Amount of fat = 4 g

1 gram of fat provides about 9.40 (food) Calories

Energy given by 4 g of fat

E=4\times 9.4\times 4186\\\Rightarrow E=157393.6\ J

Time required to burn the fat

t=\dfrac{E}{P}\\\Rightarrow t=\dfrac{157393.6}{3.7}\\\Rightarrow t=42538.811\ s

Distance traveled by the bird

s=vt\\\Rightarrow s=10.7\times 42538.811\\\Rightarrow s=455165.2777\ m

The bird will fly 455165.278 m

4 0
2 years ago
Read 2 more answers
The temperature and pressure at the surface of Mars during a Martian spring day were determined to be -50 °C and 900 Pa, respect
Sidana [21]

Answer:

T = 273 + (-50) = 273 – 50 = 223 K

R = 188.82 J / kg K for CO2

Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / m^{3}

T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa

Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg / m^{3}

4 0
2 years ago
Read 2 more answers
You and your friend throw balloons filled with water from the roof of a several story apartment house. You simply drop a balloon
Aleks [24]

Answer:

Height = 53.361 m

Explanation:

There are two balloons being thrown down, one with initial speed (u1) = 0 and the other with initial speed (u2) = 43.12

From the given information we make the following summary

u_{1} = 0m/s

t_{1} = t

u_{2} = 43.12m/s

t_{2} = (t-2.2)s

The distance by the first balloon is

D = u_{1} t_{1}  + \frac{1}{2} at_{1}^2

where

a = 9.8m/s2

Inputting the values

D = (0)t + \frac{1}{2} (9.8)t^2\\ D = 4.9t^2

The distance traveled by the second balloon

D = u_{2} t_{2}  + \frac{1}{2} at_{2}^2

Inputting the values

D = (43.12)(t-2.2)  + \frac{1}{2} (9.8)(t-2.2)^2

simplifying

D = 4.9t^2 + 21.56t -71.148

Substituting D of the first balloon into the D of the second balloon and solving

4.9t^2 = 4.9t^2 + 21.56t -71.148 \\ 21.56t = 71.148\\ t = 3.3s

Now we know the value of t. We input this into the equation of the first balloon the to get height of the apartment

D = 4.9(3.3)^2\\ D = 53.361 m

7 0
2 years ago
Other questions:
  • A crane with output power of 200W will lift a 600N object a vertical distance of 4.0 meters in seconds
    10·1 answer
  • A plastic cube with a coin taped to its top surface is floating partially submerged in water. A student marks the level of the w
    8·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • A wave on a string is described by
    10·1 answer
  • An ideal solenoid 20 cm long is wound with 5000 turns of very thin wire. What strength magnetic field is produced at the center
    10·1 answer
  • A disk of radius R (Fig. P25.73) has a nonuniform surface charge density s 5 Cr, where C is a constant and r is measured from th
    6·1 answer
  • An object is located 25.0 cm from a convex mirror. The image distance is -50.0 cm. What is the magnification?
    8·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
  • Four kilograms of carbon monoxide (CO) is contained in a rigid tank with a volume of 1 m^3. The tank is fitted with a paddle whe
    11·1 answer
  • Two pickup trucks each have a mass of 2,000 kg. The gravitational force between the trucks is 3.00 × 10-5 N. One pickup truck is
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!