The source charges' magnitude is signified by the arrows pointing outward. The more arrows there are, the greater is its magnitude. This is because, each arrow represents an electrical force exerted by the source. When you add up all the arrows there is, the electrical force becomes even greater. The answer in descending order would be C > A > B > D.
A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>
The sentence can be completed as follows:
<span>The motion of an object moving with uniform circular motion is always tangential to the circle, so the speed of an object moving in a circle is known as tangential speed.
The object moves by uniform circular motion due to the presence of a force (called centripetal force) pointing toward the center of the circle. Due to the presence of this force, the object experiences an acceleration (called centripetal acceleration) that makes the object turning in a circle. This centripetal acceleration changes only the direction of the velocity of the object, not its magnitude, which is called tangential speed and it is constant.</span>
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Answer:
the final temperature of the gas is 785.18 K
Explanation:
The computation of the final temperature of the gas is shown below:
Here we apply the gas law
= PV ÷ T
Given that
P1 = 1.9 atm
V1 = 24.6 L
T1 = 335 K
P2 = 3.5 atm
V2 = 31.3 L
T2 = ?
Now
P1V1 ÷ T1 = P2V2 ÷ T2
(1.9 × 24.6) ÷ 335 = (3.5 × 31.3)/T2
T2 = 785.18 K
hence, the final temperature of the gas is 785.18 K