Answer:
<h2>
The potential difference increases </h2>
Explanation:
from the relation 
where E= electric field (force per coulomb)
V= voltage
d= distance
Hence the voltage is going to be V= E×d.
Therefore this means that increasing the distance increases the voltage.
<span>As it is descended from a vertical height h,
The lost Potential Energy = Mgh
The gained Kenetic Energy = (1/2)Mv^2; The rotational KE = (1/2)Jw^2
The angular speed w = speed/ Radius = v/R
So Rotational KE = (1/2)Jw^2 = (1/2)J(v/R)^2; J is moment of inertia
Now Mgh = (1/2)Mv^2 + (1/2)J(v/R)^2 => 2gh/v^2 = 1 + (J/MR^2)
As v = (5gh/4)^1/2, (J/MR^2) = 2gh/v^2 - 1 => (J/MR^2) = (8gh/5gh) - 1
so (J/MR^2) = 3/5 and therefore J = (3/5)MR^2.</span>
There are two possible answers:
<span>- it can move out to a higher electron shell
- </span><span> it can stay in its original shell
</span><span>
In fact, sunlight consists of photons. When sunlight hits an electron, the electron can absorbs a photon, so it gains energy: as a result, the electron can move to a higher electron shell, which corresponds to a high energy level in the atom, if the energy given by the photon is at least equal to the energy difference between the two levels. However, if the photon energy is not large enough, the electron will stay in the same shell.</span>
Answer:
<h2>5.6kW</h2>
Explanation:
Step one:
given
mass m= 24kg
distance moved= 6m
time taken= 4seconds
Step two:
Required
power
but work done is the force applied at a distance, and the power is the work done time the time taken
Work done= F*D
F=mg
W= mg*D
W=24*9.81*6
W=1412.6J
Power P= work * time
P=1412.6*4
p=5650.5W
P=5.6kW