answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
2 years ago
11

A 70 kg student jumps down to form a 1 m high platform. She forgets to bend her knees and her downward motion stops in 0.02 seco

nds. Determine the force transmitted to her leg bones.
Physics
1 answer:
34kurt2 years ago
3 0

Answer:

15,505 N

Explanation:

Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student

-ΔU = ΔK

-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²

-(0 - mgh) = 1/2mv² - 0

mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform  = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.

mgh = 1/2mv²

gh = 1/2v²

v² = 2gh

v = √(2gh)

v = √(2 × 9.8 m/s² × 1 m)

v = √(19.6 m²/s²)

v = 4.43 m/s

Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s

So Ft = m(v' - v)

F = m(v' - v)/t

substituting the values of the variables, we have

F = 70 kg(0 m/s - 4.43 m/s)/0.02 s

= 70 kg(- 4.43 m/s)/0.02 s

= -310.1 kgm/s ÷ 0.02 s

= -15,505 N

So, the force transmitted to her bones is 15,505 N

You might be interested in
Which title best reflects the main idea of the passage? The Role of Convection in the Distribution of Earth's Energy The Role of
Leto [7]

Answer:

The Role of Heat Transfer Methods in the Distribution of Earth's Energy

Explanation:

8 0
2 years ago
Read 2 more answers
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at
Allisa [31]

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

8 0
1 year ago
Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
Sonbull [250]
The formula is Ke = 1/2 m v^2
The two of them together have a Ke of mv^2. So you either increase m or v. That's what makes the problem difficult. He can do D or B. We have to choose.

A is no solution. The Ke goes down because Paul loses Ivan's mass.
C is out of the question 3 meters/sec is a big reduction from 5 m/s. So now what do we do about B and D?

The question is what does the third person add. The tandoms I've peddled only allow for 1 or 2 people to add to the motion. So the third person only adds mass. He does not have a v that he is contributing to. To say that he is going 5m/s is true, but he's not contributing anything to that motion.

I pick B, but it is one of those questions that the correctness of it is in the head of the proposer. Be prepared to get it wrong. Argue the point politely if you agree with me, but back off as soon as you have presented your case.

B <<<<====== answer. 
5 0
2 years ago
Read 2 more answers
Suppose that a rectangular toroid has 2,000 windings and a self-inductance of 0.060 H. If the height of the rectangular toroid i
andrey2020 [161]

Answer:

0.01154 A

Explanation:

We have given the energy in the magnetic field U=4\times 10^{-6}J

Value of inductance L =0.060 H

Energy stored in magnetic field is given by U=\frac{1}{2}Li^2

i=\sqrt{\frac{2U}{L}}

i=\sqrt{\frac{2\times 4\times 10^{-6}}{0.06}}=0.01154\ A

So the current flowing through rectangular toroid will be 0.01154 A

3 0
2 years ago
The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. Which row shows how the heat ener
balu736 [363]

Answer:

The diagram shows a heater above a thermometer. The thermometer bulb is in the position shown. How the heat

5 0
2 years ago
Other questions:
  • A mass of 0.4 kg hangs motionless from a vertical spring whose length is 0.76 m and whose unstretched length is 0.41 m. Next the
    7·1 answer
  • 5. How much does a suitcase weigh if it has a mass of 22.5 kg?
    10·2 answers
  • A thin, horizontal, 18-cm-diameter copper plate is charged to -3.8 nC. Assume that the electrons are uniformly distributed on th
    5·1 answer
  • What is the temperature when a solid begins to liquefy
    13·1 answer
  • An astronaut is floating happily outside her spaceship, which is orbiting the earth at a distance above the earths surface equal
    11·1 answer
  • A uniform meter stick balances on a fulcrum placed at the 40 cm mark when a weight W is placed at the 30 cm mark. What is the we
    13·2 answers
  • You have a resistor and a capacitor of unknown values. First, you charge the capacitor and discharge it through the resistor. By
    14·1 answer
  • Cassidy Carver's family child care center has an activities table with four chairs an easel that can accommodate a child on each
    6·1 answer
  • A bicyclist is riding at a tangential speed of 13.2 m/s around a circular track. The magnitude of the centripetal force is 377 N
    14·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!