Metric
meters
body mass index
Answer:
Explanation:
Given that,
Height of the bridge is 20m
Initial before he throws the rock
The height is hi = 20 m
Then, final height hitting the water
hf = 0 m
Initial speed the rock is throw
Vi = 15m/s
The final speed at which the rock hits the water
Vf = 24.8 m/s
Using conservation of energy given by the question hint
Ki + Ui = Kf + Uf
Where
Ki is initial kinetic energy
Ui is initial potential energy
Kf is final kinetic energy
Uf is final potential energy
Then,
Ki + Ui = Kf + Uf
Where
Ei = Ki + Ui
Where Ei is initial energy
Ei = ½mVi² + m•g•hi
Ei = ½m × 15² + m × 9.8 × 20
Ei = 112.5m + 196m
Ei = 308.5m J
Now,
Ef = Kf + Uf
Ef = ½mVf² + m•g•hf
Ef = ½m × 24.8² + m × 9.8 × 0
Ef = 307.52m + 0
Ef = 307.52m J
Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw
5,10,15,20,25,30, that's how much it should have been
<span>Mechanical association learning used by an actor to memorize his lines</span>
Answer:
zero or 2π is maximum
Explanation:
Sine waves can be written
x₁ = A sin (kx -wt + φ₁)
x₂ = A sin (kx- wt + φ₂)
When the wave travels in the same direction
Xt = x₁ + x₂
Xt = A [sin (kx-wt + φ₁) + sin (kx-wt + φ₂)]
We are going to develop trigonometric functions, let's call
a = kx + wt
Xt = A [sin (a + φ₁) + sin (a + φ₂)
We develop breasts of double angles
sin (a + φ₁) = sin a cos φ₁ + sin φ₁ cos a
sin (a + φ₂) = sin a cos φ₂ + sin φ₂ cos a
Let's make the sum
sin (a + φ₁) + sin (a + φ₂) = sin a (cos φ₁ + cos φ₂) + cos a (sin φ₁ + sinφ₂)
to have a maximum of the sine function, the cosine of fi must be maximum
cos φ₁ + cos φ₂ = 1 +1 = 2
the possible values of each phase are
φ1 = 0, π, 2π
φ2 = 0, π, 2π,
so that the phase difference of being zero or 2π is maximum