answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neporo4naja [7]
2 years ago
6

A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp

ring constant of the spring is 1.00 N/cm. The mass is pulled downward 2.00 cm and released. What is the speed of the mass when it is 1.00 cm above the point from which it was released?

Physics
2 answers:
Helga [31]2 years ago
6 0

The speed of the mass is about 0.0866 m/s

\texttt{ }

<h3>Further explanation</h3>

<em>Hooke's Law states that the length of a spring is directly proportional to the force acting on the spring.</em>

\boxed {F = k \times \Delta x}

<em>F = Force ( N )</em>

<em>k = Spring Constant ( N/m )</em>

<em>Δx = Extension ( m )</em>

\texttt{ }

The formula for finding Young's Modulus is as follows:

\boxed {E = \frac{F / A}{\Delta x / x_o}}

<em>E = Young's Modulus ( N/m² )</em>

<em>F = Force ( N )</em>

<em>A = Cross-Sectional Area ( m² )</em>

<em>Δx = Extension ( m )</em>

<em>x = Initial Length ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of the object = m = 4.00 kg

force constant = k = 1.00 N/cm = 100 N/m

displacement = d = 2.00 cm = 0.02 m

<u>Unknown:</u>

speed of the mass = v = ?

<u>Solution:</u>

<em>Let's find the initial displacement of the spring:</em>

F = k x

m g = k x

4 \times 9.8 = 100 x

x = 39.2 \div 100

x = 0.392 \texttt{ m}

\texttt{ }

<em>Next, we will use </em><em>the law of conservation of energy</em><em> as follows:</em>

E_{p1} + E_{k1} = E_{p2} + E_{k2}

\frac{1}{2}k(x + d)^2 + 0 = \frac{1}{2}k(x + 0.01)^2 + mg(0.01) + \frac{1}{2}mv^2

\frac{1}{2}(100)(0.392 + 0.02)^2 = \frac{1}{2}(100)(0.392 + 0.01)^2 + 4(9.8)(0.01) + \frac{1}{2}(4)v^2

8.4872 = 8.0802 + 0.392 + 2v^2

0.015 = 2v^2

v = \sqrt{0.015 \div 2}

v = \frac{1}{20} \sqrt{3} \texttt{ m/s}

v \approx 0.0866 \texttt{ m/s}

\texttt{ }

<h3>Learn more</h3>
  • Young's modulus : brainly.com/question/6864866
  • Young's modulus for aluminum : brainly.com/question/7282579
  • Young's modulus of wire : brainly.com/question/9755626

\texttt{ }

<h3>Answer details</h3>

Grade: College

Subject: Physics

Chapter: Elasticity

\texttt{ }

Keywords: Elasticity , Diameter , Concrete , Column , Load , Compressed , Stretched , Modulus , Young

Ahat [919]2 years ago
5 0

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

You might be interested in
The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies
algol [13]

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

6 0
2 years ago
If the cold temperature reservoir of a Carnot engine is held at a constant 306 K, what temperature should the hot reservoir be k
Paraphin [41]
Efficiency η of a Carnot engine is defined to be: 
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>

<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>

<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>

<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
6 0
2 years ago
Suppose that sunlight is incident upon both a pair of reading glasses and a pair of sunglasses. Which pair would you expect to b
Ainat [17]

Answer: the pair of sunglasses

Explanation:

A good pair of sunglasses are composed of abosorbent lenses that filter the sunlight that affects the eyes retina, especially ultraviolet (UV). So, these sunglasses are used to reduce the amount of light or radiant energy transmitted.

On the other hand, normal reading glasses (in which the lens glass has not been treated to filter ultraviolet sunlight) will let UV rays pass through.

Therefore, if both glasses are exposed to sunlight, the sunglasses are expected to be warmer by absorbing that radiant energy and preventing it from reaching the eyes.

4 0
2 years ago
A fighter jet is catapulted off an aircraft carrier from rest to 75 m/s. If the aircraft carrier deck is 100 m long, what is the
egoroff_w [7]

The acceleration of the jet is 28.1 m/s^2

Explanation:

Since the motion of the jet is a uniformly accelerated motion, we can use the following suvat equation:

v^2-u^2=2as

where

v is the final velocity

u is the initial velocity

a is the acceleration

s is the displacement

For the jet in this problem, we have

u = 0

v = 75 m/s

s = 100 m

Solving for a, we find the acceleration:

a=\frac{v^2-u^2}{2s}=\frac{75^2-0}{2(100)}=28.1 m/s^2

Learn more about acceleration:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

4 0
2 years ago
A solenoid with 3,000.0 turns is 70.0 cm long. If its self-inductance is 25.0 mH, what is its radius? (The value of μ0 is 4π x 1
nevsk [136]

Answer:

A. 2.2*10^-2m

Explanation:

Using

Area = length x L/ uo xN²

So A = 0.7m * 25 x 10^-3H /( 4π x10^-7*

3000²)

A = 17.5*10^-3/ 1.13*10^-5

= 15.5*10^-2m²

Area= π r ²

15.5E-2/3.142 = r²

2.2*10^2m

Explanation:

5 0
2 years ago
Other questions:
  • Hurryyyyyy When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand p
    14·2 answers
  • Describing the motion of an object can be difficult to do and using graphs help make motion easier to understand. Motion is a ch
    15·2 answers
  • Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo
    12·2 answers
  • Identical guns fire identical bullets horizontally at the same speed from the same height above level planes, one on the Earth a
    7·1 answer
  • Enrico says that positive charge is created when you rub a glass rod with silk, and that negative charge is simply the absence o
    5·1 answer
  • Two circular rods, one steel and the other copper, are joined end to end. Each rod is 0.750 m long and 1.50 cm in diameter. The
    15·1 answer
  • A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
    9·1 answer
  • Consider a large truck and a small car driving up a straight, steep hill. The truck is moving at 60 miles per hour and the car a
    9·1 answer
  • Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual
    8·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!