answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neporo4naja [7]
1 year ago
6

A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp

ring constant of the spring is 1.00 N/cm. The mass is pulled downward 2.00 cm and released. What is the speed of the mass when it is 1.00 cm above the point from which it was released?

Physics
2 answers:
Helga [31]1 year ago
6 0

The speed of the mass is about 0.0866 m/s

\texttt{ }

<h3>Further explanation</h3>

<em>Hooke's Law states that the length of a spring is directly proportional to the force acting on the spring.</em>

\boxed {F = k \times \Delta x}

<em>F = Force ( N )</em>

<em>k = Spring Constant ( N/m )</em>

<em>Δx = Extension ( m )</em>

\texttt{ }

The formula for finding Young's Modulus is as follows:

\boxed {E = \frac{F / A}{\Delta x / x_o}}

<em>E = Young's Modulus ( N/m² )</em>

<em>F = Force ( N )</em>

<em>A = Cross-Sectional Area ( m² )</em>

<em>Δx = Extension ( m )</em>

<em>x = Initial Length ( m )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of the object = m = 4.00 kg

force constant = k = 1.00 N/cm = 100 N/m

displacement = d = 2.00 cm = 0.02 m

<u>Unknown:</u>

speed of the mass = v = ?

<u>Solution:</u>

<em>Let's find the initial displacement of the spring:</em>

F = k x

m g = k x

4 \times 9.8 = 100 x

x = 39.2 \div 100

x = 0.392 \texttt{ m}

\texttt{ }

<em>Next, we will use </em><em>the law of conservation of energy</em><em> as follows:</em>

E_{p1} + E_{k1} = E_{p2} + E_{k2}

\frac{1}{2}k(x + d)^2 + 0 = \frac{1}{2}k(x + 0.01)^2 + mg(0.01) + \frac{1}{2}mv^2

\frac{1}{2}(100)(0.392 + 0.02)^2 = \frac{1}{2}(100)(0.392 + 0.01)^2 + 4(9.8)(0.01) + \frac{1}{2}(4)v^2

8.4872 = 8.0802 + 0.392 + 2v^2

0.015 = 2v^2

v = \sqrt{0.015 \div 2}

v = \frac{1}{20} \sqrt{3} \texttt{ m/s}

v \approx 0.0866 \texttt{ m/s}

\texttt{ }

<h3>Learn more</h3>
  • Young's modulus : brainly.com/question/6864866
  • Young's modulus for aluminum : brainly.com/question/7282579
  • Young's modulus of wire : brainly.com/question/9755626

\texttt{ }

<h3>Answer details</h3>

Grade: College

Subject: Physics

Chapter: Elasticity

\texttt{ }

Keywords: Elasticity , Diameter , Concrete , Column , Load , Compressed , Stretched , Modulus , Young

Ahat [919]1 year ago
5 0

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

You might be interested in
Raphael refers to a wave by noting its wavelength. lucinda refers to a wave by noting its frequency. which student is correct an
blsea [12.9K]
They are both right because you can note both things, I mean Raphael and Lucinda, both has a right statement or explanation about the wave. Wave by nothing is both for its wavelength and for its frequency. So Raphael and Lucinda are both correct because you can note both wavelength and frequency.
7 0
2 years ago
A bowling ball starts from rest and moves 300 m down a long, downwardly angled track in 22.4 sec.a. What is its speed at the end
Sergio [31]

Answer:

The speed at the end of the track = 27 m/s

The acceleration = 1.2 m/s²

Please find the Δx vs Δt, v vs Δt, a  vs Δt

Explanation:

We have;

x = u·t + 1/2·a·t²

Where;

x = The distance = 300 m

u = The initial velocity = 0 m/s (Ball at rest)

t = The time taken = 22.4 s

Therefore;

300 = 0 + 1/2×a×22.4²

a = 2×300/22.4² = 1.19579 ≈ 1.2 m/s²

v = u + a×t

∴ v = 0 + 1.2 × 22.4 = 26.88 ≈ 27 m/s

Part of the table of values is as follows;

t,                                     x,                                          v

0,                                    0,                                        0

0.4,                                 0.095663,                         0.478316

0.8,                                 0.382653,                          0.956632

1.2,                                   0.860969,                         1.434948

1.6,                                   1.530611,                            1.913264

2,                                     2.39158,                              2.39158

2.4,                                  3.443875,                           2.869896

2.8,                                   4.687497,                          3.348212

3.2,                                   6.122445,                           3.826528

3.6,                                   7.748719,                             4.304844

4 0
2 years ago
Which radioactive isotope would take the least amount of time to become stable? rubidium-91 iodine-131 cesium-135 uranium-238
Leno4ka [110]
The radioactive isotope that would take the least amount of time to become stable is rubidium-91. This is because this isotope is the most stable compared to the rest. This was determined by subtracting its atomic mass by its atomic number. The isotope with the least number of difference is the most stable, while the one with the greatest difference is the most unstable.

Difference:
Rubidium: 54 (most stable)
Iodine: 78
Cesium: 80
Uranium: 146 (least stable)
8 0
2 years ago
Read 2 more answers
Reginald slipped and broke his leg in his kitchen when he ran inside to grab a cookie. His mother had just mopped the floor. Wha
padilas [110]

Answer:

A. <u>The water decreases the friction between the floor and the feet </u>

Explanation: Think about it like this, when your in the shower and water is on your skin, you can scrub it fluidly, but when the water dries in your towel, there is more friction when your rub your skin, this is because the molecules in water aren't as compact as solids, so anything acting against it, is most likely to disperse from it.

3 0
2 years ago
Sonrisa owns a 300 W television. If the total energy usage for February is 32.4 kWh, how many hours per week does Sonrisa watch
Zielflug [23.3K]

the correct answer is 27 hours per week :) hope this helps


6 0
2 years ago
Read 2 more answers
Other questions:
  • Which energy source is formed when organic matter is trapped underground without exposure to air or moisture?. . A. natural gas.
    8·1 answer
  • a 1250 kg car accelerates from rest to 6.13m/s over a distance of 8.58m calculate the average force of traction
    6·1 answer
  • A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
    6·1 answer
  • Juan was wearing a bright red shirt in a very dark room. What color did his shirt appear to the people with him in the room? A)
    6·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
    13·1 answer
  • A 2 ft x 2 ft x 2 ft box weighs 100 pounds, and the weight is evenly distributed. What is the magnitude of the minimum horizonta
    9·2 answers
  • The image shows the electric field lines around two charged particles. 2 balls separated vertically. Lines with arrowheads run f
    14·2 answers
  • A 1.5 volt, AAA cell supplies 750 milliamperes of current through a flashlight bulb for 5.0 minutes, while a 1.5 volt, C cell su
    7·1 answer
  • Nate throws a ball straight up to Kayla, who is standing on a balcony 3.8 m above Nate. When she catches it, the ball is still m
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!