Answer:
Specific gravity of other fluid = .854 (Approx)
Explanation:
Given:
Mass of water = 35 g
Mass of filled bottle with water = 98.44 g
Mass of filled bottle with fluid = 89.22 g
Computation:
Mass of water = 98.44g - 35g = 63.44g
Density of water = 1000 g/L
Volume of bottle = 63.44/1000 = 0.06344L
Mass of other liquid = 89.22g - 35g = 54.22g
Density of other liquid = 54.22g/0.06344L = 854.665826 g/L
Water has a specific gravity = 1
So , specific gravity of other fluid
1000 / 854.665826 = 1 / specific gravity of other fluid
Specific gravity of other fluid = .854 (Approx)
Explanation:
Whole system will accelerate under the action of applied force. The box will experience the force against the friction and when this force exceeds then the box will move. so
Ff = μs×m1×g
m1×a = μs×m1×g
a = μs×g
The applied force is given by
F = (m1 + m2)×a so
F = μs×g×(m1+m2)
Answer:
7.894 Hours.
Explanation:
Based on information number hours that this battery will last with give load has mathematical relation of.

with load 60A t = 1h, 30A t = 2h so on and forth.
two head lights draw total current of 2x3.8A = 7.6A.
putting this in above relation gives.
.
That is how long will it be before battery is dead.
Answer:
18 times
Explanation:
According to the security purposes which is set under the rules and regulation OSHA, which describes all the rights to the worker.
In the boom hoist receiving system all the sheaves which are used should have a pitch diameter of rope not less than 18 times the diameter of the nominal rope which is used.
Answer:
Explanation:
It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.
Let in equilibrium , tension in rope be T
For balancing Joe
T = M g
For balancing Simon
friction + T = mgsinθ
μmgcosθ+T = mgsinθ
μmgcosθ+Mg = mgsinθ
M = (msinθ - μmcosθ)
M = m(sinθ - μcosθ)