answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Citrus2011 [14]
2 years ago
8

Water at 20°C flows by gravity through a smooth pipe from one reservoir to a lower one. The elevation difference is 60 m. The pi

pe is 360 m long, with a diameter of 12 cm. For the given system a pump is used at night to drive water back to the upper reservoir. If the pump delivers 15,000 W to the water, estimate the flow rate. For water at 20°C, take rho = 998 kg/m3 and μ = 0.001 kg/m-s. Round the answer to the nearest whole number.
Physics
1 answer:
Serga [27]2 years ago
7 0

Answer:

Flow Rate = 80 m^3 /hours  (Rounded to the nearest whole number)

Explanation:

Given

  • Hf = head loss
  • f = friction factor
  • L = Length of the pipe = 360 m
  • V = Flow velocity, m/s
  • D = Pipe diameter = 0.12 m
  • g = Gravitational acceleration, m/s^2
  • Re = Reynolds's Number
  • rho = Density =998 kg/m^3
  • μ = Viscosity = 0.001 kg/m-s
  • Z = Elevation Difference = 60 m

Calculations

Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)

The energy equation for this system will be,

Hp = Z + Hf

The other three equations to solve the above equations are:

Re = (rho*V*D)/ μ

Flow Rate, Q = V*(pi/4)*D^2

Power = 15000 W = rho*g*Q*Hp

1/f^0.5 = 2*log ((Re*f^0.5)/2.51)

We can iterate the 5 equations to find f and solve them to find the values of:

Re = 235000

f = 0.015

V = 1.97 m/s

And use them to find the flow rate,

Q = V*(pi/4)*D^2

Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours

You might be interested in
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
2 years ago
You set a tuning fork into vibration at a frequency of 723 Hz and then drop it off the roof of the Physics building where the ac
zaharov [31]

Answer:

Explanation:

Given

Original Frequency f=723\ Hz

apparent Frequency f'=697\ Hz

There is change in frequency whenever source move relative to the observer.

From Doppler effect we can write as

f'=f\cdot \frac{v-v_o}{v+v_s}

where  

f'=apparent frequency  

v=velocity of sound in the given media

v_s=velocity of source

v_0=velocity of observer  

here v_0=0

697=723\cdot (\frac{343-0}{343+v_s})

v_s=(\frac{f}{f'}-1)v

v_s=(\frac{723}{697}-1)\cdot 343

v_s=12.79\approx 12.8\ m/s

i.e.fork acquired a velocity of 12.8 m/s

distance traveled by fork is given by

v^2-u^2=2as

where v=final velocity

u=initial velocity

a=acceleration

s=displacement

v_s^2-0=2\times 9.8\times s

s=\frac{12.8^2}{2\times 9.8}

s=8.35\ m

                                       

5 0
2 years ago
un tanque de gasolina de 40 litros fue llenado por la noche, cuando la temperatura era de 68 grados farenheit. Al dia siguiente
Sedaia [141]

Answer:

Volume of gasoline that expands and spills out is 1.33 ltr

Explanation:

As we know that when temperature of the liquid is increased then its volume will expand and it is given as

\Delta V = V_o\gamma \Delta T

here we know that

V_o = 40 Ltr

volume expansion coefficient of the gasoline is given as

\gamma = 950 × 10^{–6}

change in temperature is given as

\Delta T = (131 - 68) \times \frac{5}{9}

\Delta T = 35 ^oC

Now we have

\Delta V = 40(950 \times 10^{-6})(35)

\Delta V = 1.33 Ltr

3 0
2 years ago
A person is standing outdoors in the shade where the temperature is 35 °C.
Free_Kalibri [48]

Answer:

(a) Eₐ = 6.36 J/s

(b) Eₐ = 4.64 J/s

Explanation:

Stefan-Boltzmann law: States that the total energy per second radiated or absorbed by a black body is directly proportional to the absolute temperature.

Using, Stefan-Boltzmann equation

Eₐ =eσAT⁴ ................ Equation 1

where Eₐ = Radiant energy absorbed per seconds, e = emissivity, σ = stefan - boltzman constant, A = Surface area. and T = temperature in kelvin

(a) Where e = 0.89, σ = 5.67 ×10⁻⁸ watt/m²/K⁴, A = 140 cm² = 140 cm²(m²/10000cm²) = 0.014 m², T = 35 °C = (35 + 273) K = 308 K.

Applying these values in equation 1 above,

Eₐ = 0.89 × 5.67 ×10⁻⁸ × 0.014 × (308)⁴

Eₐ =6.36 J/s

(b) when e = 0.65,

∴ Eₐ = 0.65 × 5.67 × 10⁻⁸ × 0.014 × (308)⁴

 Eₐ = 4.64 J/s

6 0
2 years ago
A basketball player is running at a constant speed of 2.5 m/s when he tosses a basketball upward with a speed of 6.0 m/s. How fa
Strike441 [17]

Answer:

distance=6.11m

Explanation:

A basketball player is running at a constant speed of 2.5 m/s when he tosses a basketball upward with a speed of 6.0 m/s. How far does the player run before he catches the ball? Ignore air resistance. I got stuck because I wasn't sure which formula to use when approaching this problem. Does it involve an angle at all?

first of all we get the time it takes to reach the maximum height

then twice of the time it takes to reach maximum height will be the time of flight

from newtons equation of motion

v=u+at

v=0

u=6m/s

0=6-9.81t

t=.61s

the time of flight will be 1.22secs

how far it travels will then be d, the basketball player moves with a horizontal speed 2.5m/s towards the ball

distance=speed*time

distance=2.5m/s*1.22

distance=6.11m

3 0
2 years ago
Other questions:
  • Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
    11·2 answers
  • Determine whether each substance will sink or float in corn syrup, which has a density of 1.36 g/cm3. Write “sink” or “float” in
    11·2 answers
  • A car possesses 20,000 units of momentum. what would be the car's new momentum if ... its velocity was doubled?
    12·1 answer
  • Suppose you are driving a car and your friend, who is with you in the car, tosses a softball up and down from her point of view.
    7·1 answer
  • A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
    15·2 answers
  • Noise-canceling headphones are an application of destructive interference. Each side of the headphones uses a microphone to pick
    7·1 answer
  • Seema knows the mass of basketball. What other information is needed to find the balls potential energy
    5·2 answers
  • A lab technician uses laser light with a wavelength of 670 nm to test a diffraction grating. When the grating is 40.0 cm from th
    11·1 answer
  • A discus thrower turns with angular acceleration of 50 rad/s2, moving the discus in a circle of radius 0.80m. Find the radial an
    6·1 answer
  • The diagram shows a lever. A bar sits on top of a brown triangle with a black weight at the left end and a finger pushing on the
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!