Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
v₀ = initial speed of the object = 8 meter/second
v = final speed of the object = 16 meter/second
t = time taken to increase the speed = 10 seconds
d = distance traveled by the object in the given time duration = ?
using the kinematics equation
d = (v + v₀) t/2
inserting the above values in the above equation
d = (16 + 8) (10)/2
d = 120 meter
Answer : The rate of heat transfer to the water is, 37.92 kJ/min
Explanation : Given,
Time = 10 min
Mass of water = 200 g
Latent heat of fusion of water = 334 J/g
Latent heat of vaporization of water = 2230 J/g
Now we have to calculate the rate of heat transfer to the water.

Now put all the given values in the above formula, we get:


Thus, the rate of heat transfer to the water is, 37.92 kJ/min
Answer:
Explanation:
Intensity of unpolarized light = I(o)
Intensity of light after first polarization by polarizer A. = I(o)/2
Angle between A and B = 120 degree.
Intensity of light after second polarization = I Cos² θ
= I(o) /2 x cos²120 = I(o) /8 .
Angle between B and C is 70 degree
Intensity of light after third polarization =
I(o)/8 x Cos² 70 = 0.1156 x I (o) /8 =
Required ratio =.01445