<span>We'll use the momentum-impulse theorem. The x-component of the total momentum in that direction is given by p_(f) = p_(1) + p_(2) + p_(3) = 0.
So p_(1x) = m1v1 = 0.2 * 2 = 0.4 Also p_(2x) = m2v2 = 0 and p_(3x) = m3v3 = 0.1 *v3 where v3 is unknown speed and m3 is the mass of the third particle with the unknown speed
Similarly, the 235g particle, y-component of the total momentum in that direction is given by p_(fy) = p_(1y) + p_(2y) + p_(3y) = 0.
So p_(1y) = 0, p_(2y) = m2v2 = 0.235 * 1.5 = 0.3525 and p_(3y) = m3v3 = 0.1 * v3 where m3 is third particle mass.
So p_(fx) = p_(1x) + p_(2x) + p_(3x) = 0.4 + 0.1v3; v3 = 0.4/-0.1 = - 4
Also p_(fy) = 0.3525 + 0.1v3; v3 = - 0.3525/0.1 = -3.525
So v_3x = -4 and v_3y = 3.525.
The speed is their resultant = âš (-4)^2 + (-3.525)^2 = 5.335</span>
B. A 50g fish swimming in a fish tank.
Answer:

Explanation:
The centripetal acceleration is given by:

Here v is the linear speed and r is the radius of the circular motion. v is defined as the distance traveled to make one revolution (
) divided into the time takes to make one revolution, that is, the period (T).

Replacing (2) in (1) and replacing the given values:

Answer:

Explanation:
The acceleration of an object is given by:

where
v is the final velocity
u is the initial velocity
t is the time interval it takes for the velocity to change from u to v
For the rocket in this problem,
u = 20,000 m/s
v = 24,000 m/s
t = 55.0 - 5.0 = 50.0 s
Substituting,
