Answer:
The centripetal force acting on the skater is <u>48.32 N.</u>
Explanation:
Given:
Radius of circular track is, 
Tangential speed of the skater is, 
Mass of the skater is, 
We are asked to find the centripetal force acting on the skater.
We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.
Centripetal force acting on the skater is given as:

Now, plug in the given values of the known quantities and solve for centripetal force,
. This gives,

Therefore, the centripetal force acting on the skater is 48.32 N.
To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.
The first movement of 25m west is already split. x = -25m, y = 0m.
The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m
Then, we add the two x and two y displacements to get the total displacement in each direction.
x = -25m + 22.5m = -2.5m
y = 0m + 39.0m
We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m
And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3
Therefore, the total displacement is 39.08m [W86.3N]
Answer:
Option A is correct.
when it is used in a circuit. its terminal voltage will be less than 1.5 V.
Explanation:
The terminal voltage of the battery when it is in use in circuits drops lower than the 1.5 V rating given to it due to internal resistance.
All batteries give internal resistances when used in circuits. The internal resistance (though very small) is usually modelled as connected in series with the battery. It is due to some form of interference from the chemical makeup of the battery.
Normally, while the battery is fresh, the voltage (V) obtained at its terminals when connected in series with a resistor of resistance R is V = IR; where I is the current flowing in this circuit.
But once the interenal resistance (r) of the battery comes into play,
V = I₁ (r + R)
The current in the circuit evidently drops (that is I₁ < I) and V = (I₁r + I₁R)
The voltage across the terminals of the battery is no longer V but is now (V) × [R/(R+r)] which is less than the initial V and it reduces as the internal resistance, r, increases.
Hope this Helps!!!
It depends on chemistry... A physical deformation to the Jell-O.
Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D