answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
2 years ago
8

A cart is driven by a large propeller or fan, which can accelerate or decelerate the cart. The cart starts out at the position x

= 0 m, with an initial velocity of +5.0 m/s and a constant acceleration due to the fan, The direction to the right is positive. The cart reaches a maximum position of x = +12.5 m, where it begins to travel in the negative direction. Find the acceleration of the cart.
Physics
1 answer:
mash [69]2 years ago
5 0

Answer:

The acceleration of the cart is 1.0 m\s^2 in the negative direction.

Explanation:

Using the equation of motion:

Vf^2 = Vi^2 + 2*a*x

2*a*x = Vf^2 - Vi^2

a = (Vf^2 - Vi^2)/ 2*x

Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.

Let x = Xf -Xi

Where Xf is the final position of the cart and Xi the initial position of the cart.

x = 12.5 - 0

x = 12.5

The cart comes to a stop before changing direction

Vf = 0 m/s

a = (0^2 - 5^2)/ 2*12.5

a = - 1 m/s^2

The cart is decelerating

Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.

You might be interested in
The air in a pipe resonates at 150 Hz and 750 Hz, one of these resonances being the fundamental. If the pipe is open at both end
Xelga [282]

Answer:

Explanation:

Two frequencies with magnitude 150 Hz and 750 Hz are given

For Pipe open at both sides

fundamental frequency is 150 Hz as it is smaller

frequency  of pipe is given by

f=\frac{nv}{2L}

where L=length of Pipe

v=velocity of sound

f=150\ Hz for n=1

and f=750 is for n=5

thus there are three resonance frequencies for n=2,3 and 4

For Pipe closed at one end

frequency is given by

f=\frac{(2n+1)}{4L}\cdot v

for n=0

f_1=\frac{v}{4L}

f_1=150\ Hz

for n=2

f_2=\frac{5v}{4L}

Thus there is one additional resonance corresponding to n=1 , between f_1 and f_2

8 0
2 years ago
An object thrown in the air has a velocity after t seconds that can be described by v(t) = -9.8t + 24 (in meters/second) and a h
marin [14]

Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

K=\frac{1}{2}mv^{2}

For the object thrown in the air:

K=\frac{1}{2}.2.[v(t)]^{2}

K=(-9.8t+24)^{2}

K=96.04t^{2}-470.4t+576

Kinetic energy of the object as a function of time: K=96.04t^{2}-470.4t+576

Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

U=mgh

For the object thrown in the air:

U=9.8.2.h(t)

U=9.8.2.(-4.9t^{2}+24t+60)

U=-96.04t^{2}+470.4t+1176

Potential energy as function of time: U=-96.04t^{2}+470.4t+1176

Total kinetic and potential energy, also known as mechanical energy is

TME = 96.04t^{2}-470.4t+576 + (-96.04t^{2}+470.4t+1176)

TME = 1752

The expression shows that total energy of an object thrown in the air is constant and independent of time.

6 0
1 year ago
A blue puck has a velocity of 0i – 3j m/s and a mass of 4 kg. A gold puck has a velocity of 12i – 5j m/s and a mass of 6 kg. Wha
Mnenie [13.5K]
By definition, the kinetic energy is given by:
 K = (1/2) * m * v ^ 2
 where
 m = mass
 v = speed
 We must then find the speed of both objects:
 blue puck
 v = root ((0) ^ 2 + (- 3) ^ 2) = 3
 gold puck
 v = root ((12) ^ 2 + (- 5) ^ 2) = 13
 Then, the kinetic energy of the system will be:
 K = (1/2) * m1 * v1 ^ 2 + (1/2) * m2 * v2 ^ 2
 K = (1/2) * (4) * (3 ^ 2) + (1/2) * (6) * (13 ^ 2)
 K = <span> 525</span> J
 answer
 The kinetic energy of the system is<span> <span>525 </span></span>J
6 0
2 years ago
Sea breezes that occur near the shore are attributed to a difference between land and water with respect to what property?
ddd [48]

Answer:

a. mass density

Explanation:

<em>Land and sea breeze that occur near the shore are due to the variation of mass density of air with change in temperature.</em>

  • When the air gets heated it becomes rarer in density and thus rises up in the atmosphere and its space is occupied by a cooler and denser air that flows to the place.

<em>During the day the land is warmer than the sea so the sea breeze blows and during the night the water bodies are warmer than the land so the land breeze blows.</em>

7 0
2 years ago
A wave has a frequency of 34 Hz and a wavelength of 2.0 m. What is the speed of the wave? Use . A. 17 m/s B. 36 m/s C. 0.059 m/s
mel-nik [20]
F= (speed)/(wavelength)

Therefore, speed = Frequency x wavelength
  V = 68m/s
8 0
2 years ago
Read 2 more answers
Other questions:
  • Two movers use a rope system to lift a box to a third-story apartment. They do 1,200 J of work on the rope system, and the rope
    10·2 answers
  • student uses a magnet to move a 0.025 kg metal ball magnet exerts a force of 5N which causes the ball to begin moving what is th
    11·1 answer
  • Two boys want to balance a seesaw perfectly. One boy weighs 120 pounds and is sitting four feet from the fulcrum. The other boy
    7·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • How many air molecules are in a 13.0×12.0×10.0 ft room (28.2 L=1 ft3)? Assume atmospheric pressure of 1.00 atm, a room temperatu
    5·1 answer
  • You live on a planet far from ours. "Based on extensive communication with a physicist on earth", you have determined that all l
    6·1 answer
  • Suppose a bird takes off from a tree and flies in a straight line. It reaches a speed of 1o miles per second. What is the change
    15·1 answer
  • A student is flying west on a school trip from Winnipeg to Calgary in a jet that has an air velocity of 792 km/h.The direction t
    5·1 answer
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
  • A major disturbance that caused the ecosystem to stabilize at a new equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!