answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
2 years ago
10

1. For each of the following scenarios, describe the force providing the centripetal force for the motion: a. a car making a tur

n b. a child swinging around a pole c. a person sitting on a bench facing the center of a carousel d. a rock swinging on a string e. the Earth orbiting the Sun.
Physics
1 answer:
GenaCL600 [577]2 years ago
6 0

Complete Question

For each of the following scenarios, describe the force providing the centripetal force for the motion:

a. a car making a turn

b. a child swinging around a pole

c. a person sitting on a bench facing the center of a carousel

d. a rock swinging on a string

e. the Earth orbiting the Sun.

Answer:

Considering a

    The force providing the centripetal force is the frictional force on the tires \

          i.e  \mu mg  =  \frac{mv^2}{r}

    where \mu is the coefficient of static friction

Considering b

   The force providing the centripetal force is the force experienced by the boys  hand on the pole

Considering c

     The force providing the centripetal force is the normal from the bench due to the boys weight

Considering d

     The force providing the centripetal force is the tension on the string

Considering e

      The force providing the centripetal force is the force of gravity between the earth and the sun

Explanation:

You might be interested in
A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
matrenka [14]

Answer:

A)   F = - 8.5 10² N,  B)   I = 21 N s

Explanation:

A) We can solve this problem using the relationship of momentum and momentum

          I = Δp

in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction

         v₀ = 8.50 m / s

         v_f = -8.50 m / s

         F t = m v_f -m v₀

         F = m \frac{(v_f - v_o)}{t}

let's calculate

         F = 1.00 \ \frac{(-8.5-8.5)}{2 \ 10^{-2}}

         F = - 8.5 10² N

B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations

         v² = v₀² - 2g (y- y₀)

as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0

         v = \sqrt{2g y_o}

calculate  

         v = \sqrt{2 \ 9.8 \ 10}

         v = 14 m / s

to calculate the momentum we use

         I = Δp

         I = m v_f - mv₀

when it hits the ground its speed drops to zero

we substitute

         I = 1.50 (0-14)

         I = -21 N s

the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is

        I = 21 N s

4 0
1 year ago
2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
Salsk061 [2.6K]
<h3>pressure = force / area</h3>

<h3>force = 84 N</h3><h3>pressure = 6 × 10 - 5 = 55 m2</h3>

<h3>pressure = 84 / 55</h3>

<h3>pressure = 1.53 pascals</h3>

hope that helps and please tell me if i am wrong :)

8 0
1 year ago
Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end
iragen [17]

Answer:

The workdone is  W_d =-4400J

Explanation:

The free body diagram is shown on the first uploaded image

From the question we are given that

            The force is on the force gauge  F = 2750 N

             The distance that Magnus pulled the bus  d = 1.60m

Generally  the workdone by the tension force on Magnus is

                  Workdone = Force * displacement \ in \ the \ direction \ of \ force

                     W_d = F * (-d)

This negative sign show that is tension force  is in the opposite direction to Magnus movement (i.e the movement of the bus )

Substituting value we have

                   Workdone  =  - 2750 * 1.60

                                     =-4400 J

7 0
2 years ago
A sphere of radius 5.00 cm carries charge 3.00 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center
OlgaM077 [116]

Answer:

a)   E = 8.63 10³ N /C,  E = 7.49 10³ N/C

b)   E= 0 N/C,  E = 7.49 10³ N/C  

Explanation:

a)  For this exercise we can use Gauss's law

         Ф = ∫ E. dA = q_{int} /ε₀

We must take a Gaussian surface in a spherical shape. In this way the line of the electric field and the radi of the sphere are parallel by which the scalar product is reduced to the algebraic product

The area of ​​a sphere is

        A = 4π r²

 

if we use the concept of density

        ρ = q_{int} / V

        q_{int} = ρ V

the volume of the sphere is

      V = 4/3 π r³

         

we substitute

         E 4π r² = ρ (4/3 π r³) /ε₀

         E = ρ r / 3ε₀

the density is

         ρ = Q / V

         V = 4/3 π a³

         E = Q 3 / (4π a³) r / 3ε₀

         k = 1 / 4π ε₀

         E = k Q r / a³

 

let's calculate

for r = 4.00cm = 0.04m

        E = 8.99 10⁹ 3.00 10⁻⁹ 0.04 / 0.05³

        E = 8.63 10³ N / c

for r = 6.00 cm

in this case the gaussine surface is outside the sphere, so all the charge is inside

         E (4π r²) = Q /ε₀

         E = k q / r²

let's calculate

         E = 8.99 10⁹ 3 10⁻⁹ / 0.06²

          E = 7.49 10³ N/C

b) We repeat in calculation for a conducting sphere.

For r = 4 cm

In this case, all the charge eta on the surface of the sphere, due to the mutual repulsion between the mobile charges, so since there is no charge inside the Gaussian surface, therefore the field is zero.

         E = 0

In the case of r = 0.06 m, in this case, all the load is inside the Gaussian surface, therefore the field is

        E = k q / r²

      E = 7.49 10³ N / C

6 0
2 years ago
The inductor in a radio receiver carries a current of amplitude 200 mA when a voltage of amplitude 2.40 V is across it at a freq
White raven [17]

Answer:92

Explanation:

3 0
2 years ago
Other questions:
  • One beam of electrons moves at right angles to a magnetic field. the force on these electrons is 4.9 x 10-14 newtons. a second b
    13·1 answer
  • Suppose astronomers discover a new planet farther away from the Sun than Earth. How would the day and year of this planet compar
    9·2 answers
  • One reason you should avoid taking risks as a driver is:
    12·1 answer
  • Which of these shows unbalanced forces at work on an object? A. an ice skater turning as he skates around an ice rink B. a bicyc
    6·2 answers
  • A motorist inflates the tires of her car to a pressure of 180 kPa on a day when the temperature is -8.0° C. When she arrives at
    9·1 answer
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • .A 0.2-kg aluminum plate, initially at 20°C, slides down a 15-m-long surface, inclined at a 30 angle to the horizontal. The forc
    14·1 answer
  • We now have an algebraic expression with only one variable, which can be solved. Once we have that, we can plug it back into one
    9·1 answer
  • For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
    10·1 answer
  • A car is traveling at 20.0 m/s on tires with a diameter of 70.0 cm. The car slows down to a rest after traveling 300.0 m. If the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!