answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
2 years ago
9

We now have an algebraic expression with only one variable, which can be solved. Once we have that, we can plug it back into one

of the original equations (or the expression derived in Part A) to solve for the other variable. When this is done with the system of two equations from Parts A and B, what is the solution?

Physics
1 answer:
Len [333]2 years ago
3 0

Answer:

A=1

B=-2

Explanation:

Part A and B of the question wasn't given, however, I attached the relevant parts to solve this question as follows.

From part B as attached, it shows that the right option is C which is

2A+3B=-4

Substituting B with 3A-5 then we form the second equation as shown

2A+3(3A-5)=-4

By simplifying the above equation, we obtain

2A+9A-15=-4

Re-arranging, then

11A=-4+15

Finally

11A=11

A=1

To obtain B, we already know that 3A-5 so substituting the value of A into the above then we obtain

B=3(1)-5=-2

Therefore, required values are 1 and -2

You might be interested in
A 120-g block of copper is taken from a kiln and quickly placed into a beaker of negligible heat capacity containing 300 g of wa
gavmur [86]

Answer : The correct option is, (d) 535^oC

Explanation :

In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.

q_1=-q_2

m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)

where,

c_1 = specific heat of copper = 0.10cal/g^oC

c_2 = specific heat of water = 1.00cal/g^oC

m_1 = mass of copper = 120 g

m_2 = mass of water = 300 g

T_f = final temperature of mixture = 35^oC

T_1 = initial temperature of copper = ?

T_2 = initial temperature of water = 15^oC  

Now put all the given values in the above formula, we get:

120g\times 0.10cal/g^oC\times (35-T_1)^oC=-300g\times 1.00cal/g^oC\times (35-15)^oC

T_1=535^oC

Therefore, the temperature of the kiln was, 535^oC

7 0
2 years ago
Read 2 more answers
the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
kenny6666 [7]

The braking force is -400 N

Explanation:

We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

F \Delta t = m(v-u)

where in this problem, we have:

F is the force applied by the brakes

\Delta t = 65 s is the time interval

m = 13,000 kg is the mass of the ferry

u = 2.0 m/s is the initial velocity

v = 0 is the final velocity

And solving for F, we find the force applied by the brakes:

F=\frac{m(v-u)}{\Delta t}=\frac{(13000)(0-2.0)}{65}=-400 N

where the negative sign indicates that the direction is backward.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

4 0
2 years ago
On a ring road, 12 trams are spaced at regular intervals and travel at a constant speed. How many trams need to be added to the
Sphinxa [80]

3 trams must be added

Explanation:

In this problem, there are 12 trams along the ring road, spaced at regular intervals.

Calling L the length of the ring road, this means that the space between two consecutive trams is

d=\frac{L}{12} (1)

In this problem, we want to add n trams such that the interval between the trams will decrease by 1/5; therefore the distance will become

d'=(1-\frac{1}{5})d=\frac{4}{5}d

And the number of trams will become

12+n

So eq.(1) will become

\frac{4}{5}d=\frac{L}{n+12} (2)

And substituting eq.(1) into eq.(2), we find:

\frac{4}{5}(\frac{L}{12})=\frac{L}{n+12}\\\rightarrow n+12=15\\\rightarrow n = 3

Learn more about distance and speed:

brainly.com/question/8893949

#LearnwithBrainly

4 0
2 years ago
A rigid, 2.50 L bottle contains 0.458 mol He. The pressure of the gas inside the bottle is 1.83 atm. If 0.713 mol Ar is added to
stellarik [79]
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.

The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.

You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
 
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):

PiVi=niRTi --> Ti=(PiVi)/(niR)
 
PfVf=nfRTf --> Tf=(PfVf)/(nfR)

ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)

In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
8 0
2 years ago
Read 2 more answers
A windowpane is half a centimeter thick and has an area of 1.0 m2. The temperature difference between the inside and outside sur
polet [3.4K]

To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

Where

k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)

A = 1m^2 Area

L = 5*10^{-3}m Length

T_H= Temperature of the "hot"reservoir

T_C= Temperature of the "cold"reservoir

Replacing with our values we have that,

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

\frac{Q}{t} = \frac{(0.84)(1)}{0.005} (15)

\frac{Q}{t} = 2520J/s

Therefore the correct answer is B.

3 0
2 years ago
Other questions:
  • Leanne is riding a bike. The forward force from her pedalling is 18N. There is a backward force of 6N from friction and a backwa
    7·3 answers
  • A ball is released from a tower at a height of 100 meters toward the roof of another tower that is 25 meters high. The horizonta
    13·1 answer
  • in a thermal power plant, heat from the flue gases is recovered in (A) chimney (B) de-super heater (C) economizer (D) condenser
    6·1 answer
  • two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
    14·1 answer
  • An ideally efficient heat pump delivers 1000 J of heat to room air at 300 K. If it extracted heat from 260 K outdoor air, how mu
    10·1 answer
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • 2. Turn off the Parallel line and turn on the Line through focal point. Move the light bulb around. What do you notice about the
    8·1 answer
  • A 4.0 g string, 0.36 m long, is under tension. The string produces a 500 Hz tone when it vibrates in the third harmonic. The spe
    13·1 answer
  • The system shown above consists of two identical blocks that are suspended using four cords, each of a different length. Which o
    9·1 answer
  • A ball of mass 0.12kg is hit by a tennis player. The velocity of the ball changes from 0m/ s to 5.0m/s in 0.60s. What is the ave
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!