The work done on the wagon is 3549 J
Explanation:
The work done by a force when moving an object is given by
where
:
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and of the displacement
In this problem we have the following data:
F = 87 N is the magnitude of the force
d = 44 m is the displacement of the wagon
is the angle between the direction of the force and the displacement
Substituting, we find the work done

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
t = 4.17 [s]
Explanation:
We know that work is defined as the product of force by distance.
W = F*d
where:
F = force [N] (units of Newtons)
d = distance = 6.34 x 10⁴ [mm] = 63.4 [m]
In order to find the force, we must determine the weight of the box, the weight can be determined by means of the product of mass by gravitational acceleration.
w = m*g
where:
m = mass = 1.47 x 10⁴ [g] = 14.7 [kg]
g = gravity acceleration = 9.81 [m/s²]
w = 14.7*9.81
w = 144.2 [N]
Therefore the work can be calculated.
W = w*d
W = 144.2*63.4
W = 9142.72 [J] (units of Joules)
Power is now defined in physics as the relationship of work at a given time
P = W/t
where:
P = power = 2190 [W]
t = time [s]
Now clearing t, we have.
t = W/P
t = 9142.72/2190
t = 4.17 [s]
Answer:
Mass will be 4.437 kg
Explanation:
We have given force constant k = 7 N/m
Time period of oscillation T = 5 sec
So angular frequency 
We know that angular frequency is given by


Squaring both side

m = 4.437 kg
Answer:
A). σ = 3.823 x
/N-
B).
C/
C).
J
Explanation:
A). We know magnitude of charge per unit area for a conducting plate is given by

where, E is resultant electric field = 1.2 x
V/m
is permittivity of free space = 8.85 x
/N-
k is dielectric constant = 3.6
∴
= 3.6 x 8.85 x
x 1.2 x 
= 3.823 x
/N-
B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by


C/
C).
Area of the plate, A = 2.5 
= 2.5 x 

diameter of the plate, d = 1.8 mm
= 1800 m
∴ Total energy stored in the capacitor


J
Answer: Sean is standing still, and Rhea is running toward Sean while kicking the ball
Explanation: Your welcome :)