answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lubasha [3.4K]
2 years ago
7

Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe

r. What is the total pressure in the container? Express your answer in atmospheres.
Physics
1 answer:
AlexFokin [52]2 years ago
5 0

Answer:

0.56 atm

Explanation:

First of all, we need to find the number of moles of the gas.

We know that

m = 1.00 g is the mass of the gas

Mm=44.0 g/mol is the molar mass of the carbon dioxide

So, the number of moles of the gas is

n=\frac{m}{M_m}=\frac{1.00 g}{44.0 g/mol}=0.023 mol

Now we can find the pressure of the gas by using the ideal gas equation:

pV=nRT

where

p is the pressure

V=1.00 L = 0.001 m^3 is the volume

n = 0.023 mol is the number of moles

R=8.314 J/mol K is the gas constant

T=25.0^{\circ}+273=298 K is the temperature of the gas

Solving the equation for p, we find

p=\frac{nRT}{V}=\frac{(0.023 mol)(8.314 J/mol K)(298 K)}{0.001 m^3}=5.7 \cdot 10^4 Pa

And since we have

1 atm = 1.01\cdot 10^5 Pa

the pressure in atmospheres is

p=\frac{5.7\cdot 10^4 Pa}{1.01\cdot 10^5 Pa/atm}=0.56 atm

You might be interested in
A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The bal
Setler [38]

Answer

given,

mass of the ball = 3 kg

swing in vertical circle with radius = 2 m

   work done by the gravity = ?          

   work done by the tension = ?            

Work done by the gravity = - m g Δh            

 Δ h = 2 + 2 = 4 m                                                                

Work done by the gravity =- 3 \times 9.8 \times 4

                                           = -117.6 J                  

work done by gravity is equal to -117.6 J            

Work done by tension will be equal to zero.        

Zero because tension is always perpendicular to velocity

work done by tension is equal to 0 J                          

7 0
2 years ago
Steam at 0.6 MPa, 200 oC, enters an insulated nozzle with a velocity of 50 m/s. It leaves at a pressure of 0.15 MPa and a veloci
Rudiy27

Answer:

x2 = 0.99

Explanation:

from superheated water table

at pressure p1 = 0.6MPa and temperature 200 degree celcius

h1 = 2850.6 kJ/kg

From energy equation we have following relation

\dot m( h1+\frac{v1^2}{2}+ gz1 )+ Q = \dot m( h2+\frac{v2^2}{2}+ gz1) + W

\dot m( h1+\frac{v1^2}{2}) = \dot m( h2+\frac{v2^2}{2})

h1+\frac{v1^2}{2} = h2+\frac{v2^2}{2}

2850.6 + [\frac{50^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}] = h2 +[ \frac{600^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}]

h2 = 2671.85 kJ/kg

from superheated water table

at pressure p2 = 0.15MPa

specific enthalpy of fluid hf = 467.13 kJ/kg

enthalpy change hfg = 2226.0 kJ/kg

specific enthalpy of the saturated gas hg = 2693.1 kJ/kg

as it can be seen from above value hf>h2>hg, so phase 2 is two phase region. so we have

quality of steam x2

h2 = hf + x2(hfg)

2671.85 = 467.13 +x2*2226.0

x2 = 0.99

6 0
2 years ago
A filamentary conductor is formed into an equilateral triangle with sides of length carrying current i . find the magnetic field
arsen [322]

magnetic field due to a finite straight conductor is given by

B = \frac{\mu_0 i}{4\pi r}(sin\theta_1 + sin\theta_2)

here since it forms an equilateral triangle so we will have

\theta_1 = \theta_2 = 60 degre

also the perpendicular distance of the point from the wire is

r = \frac{a}{2\sqrt3}

now from the above equation magnetic field due to one wire is given by

B = \frac{\mu_0 i}{4\pi \frac{a}{2\sqrt3}(sin60 + sin60)

B = \frac{\mu_0 i*2\sqrt3}{4\pi a}(\sqrt3)

B = \frac{3\mu_0 i}{2\pi a}

now since in equilateral triangle there are three such wires so net magnetic field will be

B = \frac{9\mu_0 i}{2\pi a}

5 0
2 years ago
If one replaces the conducting cube with one that has positive charge carriers, in what direction does the induced electric fiel
Grace [21]

Answer:

There will be no change in the direction of the electric field .

Explanation:

The direction will remain the same because the sign of the charges has no effect on it.

When one replaces the conducting cube with one that has positive charge carriers there will be no change in the direction of the field as there is no defined relationship between the direction of the electric field and sign of the charge.

3 0
2 years ago
You have a light spring which obeys Hooke's law. This spring stretches 2.92 cm vertically when a 2.70 kg object is suspended fro
ehidna [41]

(a) 907.5 N/m

The force applied to the spring is equal to the weight of the object suspended on it, so:

F=mg=(2.70 kg)(9.8 m/s^2)=26.5 N

The spring obeys Hook's law:

F=k\Delta x

where k is the spring constant and \Delta x is the stretching of the spring. Since we know \Delta x=2.92 cm=0.0292 m, we can re-arrange the equation to find the spring constant:

k=\frac{F}{\Delta x}=\frac{26.5 N}{0.0292 m}=907.5 N/m

(b) 1.45 cm

In this second case, the force applied to the spring will be different, since the weight of the new object is different:

F=mg=(1.35 kg)(9.8 m/s^2)=13.2 N

So, by applying Hook's law again, we can find the new stretching of the spring (using the value of the spring constant that we found in the previous part):

\Delta x=\frac{F}{k}=\frac{13.2 N}{907.5 N/m}=0.0145 m=1.45 cm

(c) 3.5 J

The amount of work that must be done to stretch the string by a distance \Delta x is equal to the elastic potential energy stored by the spring, given by:

W=U=\frac{1}{2}k\Delta x^2

Substituting k=907.5 N/m and \Delta x=8.80 cm=0.088 m, we find the amount of work that must be done:

W=\frac{1}{2}(907.5 N/m)(0.088 m)^2=3.5 J

5 0
2 years ago
Other questions:
  • On which planet would a spaceship need the largest force to take off
    14·2 answers
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • A motorist inflates the tires of her car to a pressure of 180 kPa on a day when the temperature is -8.0° C. When she arrives at
    9·1 answer
  • Pions have a half-life of 1.8 x 10^-8 s. A pion beam leaves an accelerator at a speed of 0.8c. What is the expected distance ove
    10·1 answer
  • A small crack occurs at the base of a 15.0-m-high dam. The effective area through which water leaves is 2.30 × 10-3 m2. (a) Igno
    6·1 answer
  • A book is moved once around the edge of a tabletop with dimensions 1.75 m à 2.25 m. If the book ends up at its initial position,
    10·1 answer
  • A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
    8·1 answer
  • A wire has an electric field of 6.2 V/m and carries a current density of 2.4 x 108 A/m2. What is its resistivity
    15·1 answer
  • Peter left Town A at 13:30 and travelled towards Town B at an
    11·1 answer
  • Sunitha can type 1800 words in half an hour. What is her typing speed in words per minute?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!