Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
Explanation:
Initial velocity u = V₀ in upward direction so it will be negative
u = - V₀
Displacement s = H . It is downwards so it will be positive
Acceleration = g ( positive as it is also downwards )
Using the formula
v² = u² + 2 g s
v² = (- V₀ )² + 2 g H
= V₀² + 2 g H .
v = √ ( V₀² + 2 g H )
Answer:
Torque τ =w ×0 = 0
Explanation:
We know that the torque is given by the product of the force and perpendicular distance between the force and the axis.
Here the gravity force act at the center and the rotational axis is also passing through the center.
Therefore the perpendicular distance between the force and the rotational axis would be zero.
Hence the torque will be
Torque = Force × Perpendicular distance
Torque = mg×0 = 0
Therefore the torque would be zero.
Answer:
Acceleration generate by punk = 3 m/s²
Explanation:
Given:
Weight of punk = 100 Kg
Force applied on punk = 300 N
Find:
Acceleration generate by punk = ?
Computation:
Acceleration = Force / Mass
Acceleration generate by punk = Force applied on punk / Weight of punk
Acceleration generate by punk = 300 N / 100 Kg
Acceleration generate by punk = 3 m/s²
I found the answers here. Hope this helps you! https://1.cdn.edl.io/sJTle6yxt3qVq7jHfdHRZJ3Xogj7ps6swBO9umNcZ6PO3SMN.docx