Answer:
D) No, since kinetic energy is not conserved.
Explanation:
Since momentum is always conserved in all collision
so in Y direction we can say


Now similarly in X direction we will have


now final kinetic energy of both puck after collision is given as


initial kinetic energy of both pucks is given as


since KE is decreased here so it must be inelastic collision
D) No, since kinetic energy is not conserved.
Kinetic energy. I hope that helps
Answer:
The amount of charge the space shuttle collects is -1.224nC
Explanation:
The magnitude of Electric potential is given as;
V = kq/r
where;
V is the electric potential in volts
k is coulomb's constant
r is the radius of the sphere or distance moved by the charge
given; V = -1.1 V, k = 8.99 x 10⁹ Nm²/C², r = 10m
Substituting this values in the above equation, we estimate the amount of charge space shuttle collects.
q = (V*r)/k
q = (-1.1 *10)/(8.99 x 10⁹ )
q = -1.224 X 10⁻⁹ C
q = -1.224nC
Therefore, the amount of charge the space shuttle collects is -1.224nC
Answer:
The tension in the cable when the craft was being lowered to the seafloor is 4700 N.
Explanation:
Given that,
When the craft was stationary, the tension in the cable was 6500 N.
When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N.
The drag force of 1800 N will act in the upward direction. As it was lowered or raised at a steady rate, so its acceleration is 0. As a result, net force is 0. So,
T + F = W
Here, T is tension
F = 1800 N
W = 6500 N
Tension becomes :

So, the tension in the cable when the craft was being lowered to the seafloor is 4700 N.