Answer:
The maximum speed of the car at the bottom of that drop is 26.34 m/s.
Explanation:
Given that,
The maximum vertical distance covered by the roller coaster, h = 35.4 m
We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :



v = 26.34 m/s
So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.
Answer:
I = 4.75 A
Explanation:
To find the current in the wire you use the following relation:
(1)
E: electric field E(t)=0.0004t2−0.0001t+0.0004
ρ: resistivity of the material = 2.75×10−8 ohm-meters
J: current density
The current density is also given by:
(2)
I: current
A: cross area of the wire = π(d/2)^2
d: diameter of the wire = 0.205 cm = 0.00205 m
You replace the equation (2) into the equation (1), and you solve for the current I:

Next, you replace for all variables:

hence, the current in the wire is 4.75A
Answer:
24.3 degrees
Explanation:
A car traveling in circular motion at linear speed v = 12.8 m/s around a circle of radius r = 37 m is subjected to a centripetal acceleration:

Let α be the banked angle, as α > 0, the outward centripetal acceleration vector is split into 2 components, 1 parallel and the other perpendicular to the road. The one that is parallel has a magnitude of 4.43cosα and is the one that would make the car slip.
Similarly, gravitational acceleration g is split into 2 component, one parallel and the other perpendicular to the road surface. The one that is parallel has a magnitude of gsinα and is the one that keeps the car from slipping outward.
So 



A bathroom scales works due to gravity. Under normal
conditions, a reading can be obtained when your body is pushing some force on
the scale. However in this case, since you and the scale are both moving
downwards, so your body is no longer pushing on the scale. Therefore the answer
is:
<span>The reading will drop to 0 instantly</span>