The intended observation in this experiment is to check the flow of water through the cotton cloth when pouring the water through different material (sand, rocks and pebbles).
We will observe that the rate of water flow changes depending on which material it is flowing through.
The used materials in this experiment (sand, rocks and pebbles) are the same as those forming different layers of the earth.
Therefore, based on the above explanation, we can infer that the best answer is:
<span>D. groundwater moves at different rates through different layers of the Earth</span>
Let h = the distance from the edge of the wall to the water surface (m).
Use g = 9.8 m/s² and neglect air resistance.
The initial vertical velocity of the pebble is zero.
Because the pebble hits the surface of the water after 1.5 s, therefore
h = (1/2)*(9.8 m/s²)*(1.5 s)² = 11.025 m
Answer: 11.025 m
Answer:
292796435 seconds ≈ 300 million seconds
Explanation:
First of all, the speed of the car is 121km/h = 33.6111 m/s
The radius of the planet is given to be 7380 km = 7380000 m
From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec
If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have
w(vehicle) = 9.78 x w(planet)
w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec
To find the period of the planet's rotation; we use the equation
w(planet) = 2π÷T
Where w(planet) is the angular velocity of the planet and T is the period
From the equation T = 2π÷w = 2×(22/7) ÷ 4.66 x 10⁻⁷ = 292796435 seconds
Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds
Answer:
The current needed to transmit Power of 4 W is 28.47 A
Solution:
As per the question:
Length of the antenna, 
Frequency, 
Power transmitted, 
Now,
For a monopole antenna:

where
= wavelength transmitted by the antenna
c = speed of light in vacuum

Now,
Since, the value of
>>
thus the monopole is a Hertian monopole.
The resistance is calculated as:




Now, the current I is given by:
