Work done by a given force is given by

here on sled two forces will do work
1. Applied force by Max
2. Frictional force due to ground
Now by force diagram of sled we can see the angle of force and displacement
work done by Max = 

Now similarly work done by frictional force



Now total work done on sled


Answer:
1.034m/s
Explanation:
We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

Substituting,


Part B)
For the Part B we need to apply conserving momentum equation, this formula is given by,

Where here
is the velocity after the collision.



A. Density only depends on the substance. It doesn't matter whether you have a little chip of it or a supertanker full of it ... the density doesn't change.
Answer:
given,
mass of copper = 100 g
latent heat of liquid (He) = 2700 J/l
a) change in energy
Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (300 - 4)
Q = 11153.63 J
He required
Q = m L
11153.63 = m × 2700
m = 4.13 kg
b) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (78 - 4)
Q = 2788.41 J
He required
Q = m L
2788.41 = m × 2700
m = 1.033 kg
c) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (20 - 4)
Q = 602.90 J
He required
Q = m L
602.9 = m × 2700
m =0.23 kg