answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
2 years ago
15

The Special Olympics raises money through "plane pull" events in which teams of 25 people compete to see who can pull a 74,000 k

g airplane 3.7 m across the tarmac. The inertia of the plane is an issue--but so is the 14,000 N rolling friction force that works against the teams. If a team pulls with a constant force, and thus a constant acceleration, and moves the plane 3.7 m in 6.1 s (an excellent time),a. What force does the team pull with?b. What is the speed of the plane at the end of the pull?c. What fraction of the teamâs work goes to kinetic energy of the plane?
Physics
1 answer:
Murrr4er [49]2 years ago
3 0

Answer:

28716.4740661 N

1.2131147541 m/s

51.2474965841%

Explanation:

m = Mass of plane = 74000 kg

s = Displacement = 3.7 m

f = Frictional force = 14000 N

t = Time taken = 6.1 s

u = Initial velocity = 0

v = Final velocity

s=ut+\frac{1}{2}at^2\\\Rightarrow 3.7=0\times 6.1+\frac{1}{2}\times a\times 6.1^2\\\Rightarrow a=\frac{3.7\times 2}{6.1^2}\\\Rightarrow a=0.198871271164\ m/s^2

Force is given by

F=ma+f\\\Rightarrow F=74000\times 0.198871271164+14000\\\Rightarrow F=28716.4740661\ N

The force with which the team pulls the plane is 28716.4740661 N

v=u+at\\\Rightarrow v=0+0.198871271164\times 6.1\\\Rightarrow v=1.2131147541\ m/s

The speed of the plane is 1.2131147541 m/s

Kinetic energy is given by

K=\dfrac{1}{2}mv^2\\\Rightarrow K=\dfrac{1}{2}\times 74000\times 1.2131147541^2\\\Rightarrow K=54450.9540448\ J

Work done is given by

W=Fs\\\Rightarrow W=28716.4740661\times 3.7\\\Rightarrow W=106250.954045\ J

The fraction is given by

\dfrac{54450.9540448}{106250.954045}=0.512474965841

The teams 51.2474965841% of the work goes to kinetic energy of the plane.

You might be interested in
A 18.0−μF capacitor is placed across a 22.5−V battery for a few seconds and is then connected across a 12.0−mH inductor that has
Gelneren [198K]

Answer:

Part a)

i = 10.4 mA

Part b)

in this case the charge on the capacitor will become zero

Part c)

t_1 = 0.73 ms

Part d)

t = 2.2 ms

Explanation:

As we know that first capacitor is charged with the battery and then it is connected to the inductor

So here we will have

Q = CV

Q = (18\mu F)(22.5 V)

Q = 405 \mu C

Part a)

now since the total energy of capacitor is converted into the energy of inductor

so by energy conservation we can say

\frac{Q^2}{2C} = \frac{1}{2}Li^2

so maximum current is given as

i = \sqrt{\frac{L}{C}}Q

i = \sqrt{\frac{12\times 10^{-3}}{18\times 10^{-6}}}(405\times 10^{-6})

i = 10.4 mA

Part b)

When current is maximum then whole energy of capacitor is converted into magnetic energy of inductor

So in this case the charge on the capacitor will become zero

Part c)

Time period of oscillation of charge between the plates and inductor is given as

T = 2\pi\sqrt{LC}

T = 2\pi\sqrt{(18\mu F)(12 mH)}

T = 2.92 ms

now capacitor gets discharged first time after 1/4 of total time period

t_1 = 0.73 ms

Part d)

Since time period is T and capacitor gets discharged two times in one complete time period of the motion

so first it will discharges in T/4 time

then next T/4 it will get charged again

then next T/4 time it will again discharged

so total time taken

t = 3T/4

t = 2.2 ms

4 0
2 years ago
Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
luda_lava [24]
For nuclear reactions, we determine the energy dissipated from the process from the Theory of relativity wherein energy is equal to the mass defect times the speed of light. We calculate as follows:

E = mc^2 = 0.187456 (3x10^8)^2 = 1.687x10^16 J

Hope this answers the question.
8 0
2 years ago
Read 2 more answers
Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
Temka [501]

Answer:

F=ma is the relationship where, F is force, m is mass and a is acceleration.

Newton's second law states that  the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.

If we apply force to a toy car then It will accelerate.

This is how Newton's second law of motion is verified.

6 0
2 years ago
Read 2 more answers
Which of these has the most kinetic energy
Vesnalui [34]
B. A 50g fish swimming in a fish tank.
7 0
2 years ago
Read 2 more answers
An infinite conducting cylindrical shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface ch
gayaneshka [121]

Answer:

Explanation:

Solution is in the picture attached

8 0
2 years ago
Other questions:
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • What is the factor involved in increasing an object’s inertia?
    14·1 answer
  • Write the meaning of an object has 2 meter length
    15·1 answer
  • A room with dimensions 7.00m×8.00m×2.50m is to be filled with pure oxygen at 22.0∘C and 1.00 atm. The molar mass of oxygen is 32
    7·1 answer
  • What minimum heat is needed to bring 250 g of water at 20 ∘C to the boiling point and completely boil it away? The specific heat
    12·1 answer
  • In Michael Johnson's world-record 400 m sprint, he ran the first 100 m in 11.20 s; then he reached the 200 m mark after a total
    12·1 answer
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • A horizontal rectangular surface has dimensions 2.80 cm by 3.20 cm and is in a uniform magnetic field that is directed at an ang
    8·1 answer
  • 1-A boy rolls a toy car across a floor with a velocity of 3.21 m/s. How long does it take the car to travel a distance of 4.50 m
    11·1 answer
  • A student measured the density of Galena to be 7.9g/cm3 however the known density of Galena is 7.6g/cm3 . Calculate the percent
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!