answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
2 years ago
14

A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30

.0 m and the coefficient of static friction between the tires of the car and the road is 0.65, what is the maximum speed (in km/hr) the car can go without skidding?
Physics
1 answer:
IRISSAK [1]2 years ago
7 0

Answer:

maximum speed 56 km/h

Explanation:

To apply Newton's second law to this system we create a reference system with the horizontal x-axis and the Vertical y-axis. In this system, normal is the only force that we must decompose

       sin 10 = Nx / N

      cos 10 = Ny / N

      Ny = N cos 10

     Nx = N sin 10

Let's develop Newton's equations on each axis

X axis

We include the force of friction towards the center of the curve because the high-speed car has to get out of the curve

     Nx + fr = m a

     a = v2 / r

     fr = mu N

     N sin10 + mu N = m v² / r

     N (sin10 + mu) = m v² / r

Y Axis  

     Ny -W = 0

     N cos 10 = mg

Let's solve these two equations,

    (mg / cos 10) (sin 10 + mu) = m v² / r

    g (tan 10 + μ / cos 10) = v² / r

    v² = r g (tan 10 + μ / cos 10)

They ask us for the maximum speed

   v² = 30.0 9.8 (tan 10+ 0.65 / cos 10)

   v² = 294 (0.8364)  

   v = √(245.9)

   v = 15.68 m / s

Let's reduce this to km / h

   v = 15.68 m / s (1 km / 1000m) (3600s / 1h)

   v = 56.45 km / h

This is the maximum speed so you don't skid

You might be interested in
You start with spring that's already been stretched an unknown amount from equilibrium. After stretching it an additional 2.0 cm
maxonik [38]

Answer: 35*10^3 N/m

Explanation: In order to explain this problem we know that the potential energy for spring is given by:

Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.

We  also know that with additional streching of 2 cm of teh spring,  the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.

Then the difference of energy for both cases is 7 J so:

ΔUp= 1/2*k* (0.02)^2 then

k=2*7/(0.02)^2=35000 N/m

7 0
2 years ago
Kara Less was applying her makeup when she drove into South's busy parking lot last Friday morning. Unaware that Lisa Ford was s
exis [7]

Answer

given,

Mass of Kara's car = 1300 Kg

moving with speed = 11 m/s

time taken to stop = 0.14 s

final velocity = 0 m/s

distance between Lisa ford and Kara's car = 30 m

a) change in momentum of Kara's car

  Δ P = m Δ v                  

  \Delta P = m (v_f-v_i)

  \Delta P = 1300 (0 - 11)

  Δ P = - 1.43 x 10⁴ kg.m/s

b) impulse is equal to change in momentum of the car

    I = - 1.43 x 10⁴ kg.m/s

c) magnitude of force experienced by Kara

  I = F x t

 I is impulse acting on the car

 t is time

  - 1.43 x 10⁴= F x 0.14

    F = -1.021 x 10⁵ N

negative sign represents the direction of force

8 0
2 years ago
Read 2 more answers
A boy uses a slingshot to launch a pebble straight up into the air. The pebble reaches a height of 37.0 m above the launch point
denis-greek [22]

Answer:

V0=27.4 m/s; t=0.8 s

Explanation:

Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:

y_f=v_0t-0.5*g*t^2 We solve for initial speed

v_0=\frac{y_f+0.5gt^2}{t}=\frac{37+4.9*2.3^2}{2.3}=27.4m/s

Now, using the same expression we estimated time to first reach 18.5 m :

18.5=27.4t-4.9t^2 Second order equation with solutions

t1=0.8 s and t2=4.8 s

The first time corresponds to the first reach.

7 0
2 years ago
Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away. Arrow b
prisoha [69]

Answer:

Straight line in the direction of the tangential velocity the ball had at the moment the string broke

Explanation:

After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.

3 0
2 years ago
Read 2 more answers
7. A stream of water strikes a stationary turbine blade horizontally, as the drawing illustrates. The oncoming water stream has
NNADVOKAT [17]

Answer:

The magnitude of the average force exerted on the water by the blade is 960 N.

Explanation:

Given that,

The mass of water per second that strikes the blade is, \dfrac{m}{t}=30\ kg/s

Initial speed of the oncoming stream, u = 16 m/s

Final speed of the outgoing water stream, v = -16 m/s

We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :

F=\dfrac{\Delta P}{\Delta t}

F=\dfrac{m(v-u)}{\Delta t}

F=30\ kg/s\times (-16-16)\ m/s

F = -960 N

So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.

6 0
2 years ago
Other questions:
  • A major benefit of the daguerreotype process is that ________.
    14·1 answer
  • Calculate the amount of hcn that gives the lethal dose in a small laboratory room measuring 14 × 15 × 8.0ft. the density of air
    11·1 answer
  • Two students are working together on an experiment that measures the effect of different liquid fertilizers on the thickness of
    14·2 answers
  • If the temperature is lowered from 60 °c to 30 °c, the volume of a fixed amount of gas will be one half the original volume. if
    11·1 answer
  • The angle θ is slowly increased. Write an expression for the angle at which the block begins to move in terms of μs.
    7·1 answer
  • A zebra runs across a field at a constant speed of 14m/s how far does the zebra go in 8 seconds?
    9·2 answers
  • A baseball is moving at a speed of 2.2\,\dfrac{\text{m}}{\text{s}}2.2 s m ​ 2, point, 2, space, start fraction, m, divided by, s
    9·1 answer
  • A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. The coefficie
    7·2 answers
  • In a particular application involving airflow over a surface, the boundary layer temperature distribution may be approximated as
    15·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!