answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
2 years ago
8

7. A stream of water strikes a stationary turbine blade horizontally, as the drawing illustrates. The oncoming water stream has

a velocity of 16.0 m/sec, while the outgoing water stream has a velocity of 16.0 m/sec in the opposite direction. The mass of water per second that strikes the blade is 30.0 kg/sec. Find the magnitude of the average force exerted on the water by the blade.
Physics
1 answer:
NNADVOKAT [17]2 years ago
6 0

Answer:

The magnitude of the average force exerted on the water by the blade is 960 N.

Explanation:

Given that,

The mass of water per second that strikes the blade is, \dfrac{m}{t}=30\ kg/s

Initial speed of the oncoming stream, u = 16 m/s

Final speed of the outgoing water stream, v = -16 m/s

We need to find the magnitude of the average force exerted on the water by the blade. It can be calculated using second law of motion as :

F=\dfrac{\Delta P}{\Delta t}

F=\dfrac{m(v-u)}{\Delta t}

F=30\ kg/s\times (-16-16)\ m/s

F = -960 N

So, the magnitude of the average force exerted on the water by the blade is 960 N. Hence, this is the required solution.

You might be interested in
Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
max2010maxim [7]

Answer:

2.5 m/s

Explanation:

Mechanical energy is the sum of the potential and kinetic energy.

E = PE + KE

E = mgh + ½mv²

172.1 J = (7.26 kg) (9.8 m/s²) (2.1 m) + ½ (7.26 kg) v²

v = 2.5 m/s

7 0
2 years ago
Read 2 more answers
A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
GalinKa [24]

Answer:

Kinetic energy, E = 133.38 Joules

Explanation:

It is given that,

Mass of the model airplane, m = 3 kg

Velocity component, v₁ = 5 m/s (due east)

Velocity component, v₂ = 8 m/s (due north)

Let v is the resultant of velocity. It is given by :

v=\sqrt{v_1^2+v_2^2}

v=\sqrt{5^2+8^2}=9.43\ m/s

Let E is the kinetic energy of the plane. It is given by :

E=\dfrac{1}{2}mv^2

E=\dfrac{1}{2}\times 3\ kg\times (9.43\ m/s)^2

E = 133.38 Joules

So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.

5 0
1 year ago
Read 2 more answers
A sphere of radius 5.00 cm carries charge 3.00 nC. Calculate the electric-field magnitude at a distance 4.00 cm from the center
OlgaM077 [116]

Answer:

a)   E = 8.63 10³ N /C,  E = 7.49 10³ N/C

b)   E= 0 N/C,  E = 7.49 10³ N/C  

Explanation:

a)  For this exercise we can use Gauss's law

         Ф = ∫ E. dA = q_{int} /ε₀

We must take a Gaussian surface in a spherical shape. In this way the line of the electric field and the radi of the sphere are parallel by which the scalar product is reduced to the algebraic product

The area of ​​a sphere is

        A = 4π r²

 

if we use the concept of density

        ρ = q_{int} / V

        q_{int} = ρ V

the volume of the sphere is

      V = 4/3 π r³

         

we substitute

         E 4π r² = ρ (4/3 π r³) /ε₀

         E = ρ r / 3ε₀

the density is

         ρ = Q / V

         V = 4/3 π a³

         E = Q 3 / (4π a³) r / 3ε₀

         k = 1 / 4π ε₀

         E = k Q r / a³

 

let's calculate

for r = 4.00cm = 0.04m

        E = 8.99 10⁹ 3.00 10⁻⁹ 0.04 / 0.05³

        E = 8.63 10³ N / c

for r = 6.00 cm

in this case the gaussine surface is outside the sphere, so all the charge is inside

         E (4π r²) = Q /ε₀

         E = k q / r²

let's calculate

         E = 8.99 10⁹ 3 10⁻⁹ / 0.06²

          E = 7.49 10³ N/C

b) We repeat in calculation for a conducting sphere.

For r = 4 cm

In this case, all the charge eta on the surface of the sphere, due to the mutual repulsion between the mobile charges, so since there is no charge inside the Gaussian surface, therefore the field is zero.

         E = 0

In the case of r = 0.06 m, in this case, all the load is inside the Gaussian surface, therefore the field is

        E = k q / r²

      E = 7.49 10³ N / C

6 0
2 years ago
Imagine that a small boy and his much larger father are enjoying a winter morning, sliding along the ice on a nearby playground.
kramer
You can write an hypothesis such as this:
The weight of an object has effects on the operating frictional force, the greater the weight, the higher the operating frictional force.
The father is the one with the higher weight while the son has the lower weight. The operating frictional force is the friction that their weights exert.
8 0
2 years ago
Read 2 more answers
What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
Murrr4er [49]

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

3 0
2 years ago
Other questions:
  • What is the approximate increase in size from a 1 w to a 2w carbon resistor?
    5·1 answer
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • The inner and outer surfaces of a 5m x 6m brick wall of thickness 30 cm and thermal conductivity 0.69 w/m.0 c are maintained at
    7·1 answer
  • When monochromatic light illuminates a grating with 7000 lines per centimeter, its second order maximum is at 62.4°. what is the
    5·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    14·1 answer
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • liquid methane and liquid water are different, but they do have some things in common. what are some things that all liquids hav
    11·1 answer
  • An object travels 50 m in 4 s. It had no initial velocity and experiences constant acceleration. What is the magnitude of the ac
    5·1 answer
  • Part A
    11·1 answer
  • What type of system would allow light and air to enter and exit?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!