Answer:
only the weight of the ball will act on the ball
Explanation: There is no contact force on the ball. Also there is no air resistance on the ball so the friction force on the ball due to air is not shown
The distance (ft) traveled by the particle at time t (s) is
s(t) = 0.01 t⁴ - 0.02 t³
Part (a)
The velocity at time t is
v(t) = 0.04t³ - 0.06t² ft/s
Part (b)
After 1 s, the velocity is
v(1) = 0.04 - 0.06 = - 0.02 ft/s
Part (c)
When the particle is at rest, the velocity is zero. The time when this happens is given by
0.04t³ - 0.06t² = 0
t²(0.04t - 0.06) = 0
The graph shown below presents a clear picture of the motion.
Answer:
t = 0 (smaller value) or t = 1.5 s (larger value)
The first law of thermodynamics says that the variation of internal energy of a system is given by:

where Q is the heat delivered by the system, while W is the work done on the system.
We must be careful with the signs here. The sign convention generally used is:
Q positive = Q absorbed by the system
Q negative = Q delivered by the system
W positive = W done on the system
W negative = W done by the system
So, in our problem, the heat is negative because it is releaed by the system:
Q=-1275 J
while the work is positive because it is performed by the surrounding on the system:
W=+855 J
So, the variation of internal energy of the system is
Answer:
4/10 of L.
Explanation:
A stopped pipe is a pipe with one closed end and one opened end. it is also called a closed pipe.
The fundamental mode of a stopped pipe is also called its fundamental frequency, and is f₁=v/4L.
Where f₁=fundamental frequency, v= velocity of sound, L= Length of pipe.
The fifth harmonic of the stopped pipe f₅ =5v/4L .................(1)
For an open pipe,
Fundamental mode is also called fundamental frequency f₁₀=v/2l₀ .......... (2)
Where f₁₀ = fundamental frequency of a closed pipe, v= velocity of sound and l₀=length of the resulting open pipe.
from the question, the fundamental mode of the resulting open pipe = The fifth harmonic of the original stopped pipe.
∴ f₅=f₁₀
⇒5v/4L = v/2l₀
Equating v from both side of the equation,
⇒ 5/4L = 1/2l₀
Cross multiplying the equation,
5×2l₀ = 4L× 1
10l₀ = 4L
Dividing both side of the equation by the coefficient of l₀ i.e 10
10l₀/10 = 4L/10
∴ l₀ = 4/10(L)
∴ 4/10 of L must be cut off
Answer:

Explanation:
We can try writing the equation of the horizontal component of the length of the minute hand in terms of distance and the angle, that depends of time in this particular case.
The x-component of the length of the minute hand is:
(1)
- d is the length of the minute hand (d=D/2)
- D is the diameter of the clock
- t is the time (min)
Now, using the angular kinematic equations we can express the angle in term of angular velocity and time. As we know, the minute hand moves with a constant angular velocity, so we can use this equation:
(2)
Also we know, that the minute hand moves 90 degrees or π/2 rad in 15 min, so using the definition of angular velocity, we have:
Now, let's put this value on (2)
Finally the length x(t) of the shadow of the minute hand as a function of time t, will be:

I hope it helps you!