Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


Answer:

Explanation:
The energy needed to ionize a hydrogen atom in the ground state is:

The energy of the photon is related to the wavelength by

where
h is the Planck constant
c is the speed of light
is the wavelength
Solving the formula for the wavelength, we find

Answer with Explanation:
We are given that


Charge on proton,q=
a.We have to find the electric potential of the proton at the position of the electron.
We know that the electric potential

Where 


B.Potential energy of electron,U=
Where
Charge on electron
=Charge on proton
Using the formula


Potassium belongs to group IA of the elements. This means that it will give up one of its electrons to form the cation K+. Opposite to that is bromine in which it accepts one electrons to form the anion Br-. The binding of these elements will form KBr and is formed from transfer of electron from one element to the other. This is the mechanism of ionic bond formation.
Answer:
If the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.
Explanation:
If a star's gravity is high enough, when it condenses on itself, it will form a black hole. Otherwise, it will create a large amount of highly dense matter, such as a neutron star. It can be said that if the mass of a star is greater than 3 solar masses, it will create a black hole. If its mass is less, it will create a neutron star.