The speed is 0.956 m / s.
<u>Explanation</u>:
The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.
K.E = 1/2
m

where K.E represents the kinetic energy,
m represents the mass,
v represents the velocity.
K.E = 1/2
m

1.10
10^42 = 1/2
3.26
10^31

= (1.10
10^42
2) / (3.26
10^31)
v = 0.956 m / s.
Use stronger magnets
increase current
push magnets closer to coil
adding more sets of coils
The given situation below describes a standing wave because the string is fixed at both ends. A standing wave having three anti-nodes will have a wavelength that is two-thirds the length of the string. After getting the wavelength, this can be multiplied with the frequency to get the wave speed.
For this problem:
wave length = (2/3)(length of string: 68 cm)
wave length = (10/3 cm)
wave speed = wave length x frequency
wave speed = (10/3 cm) x (180 Hz)
wave speed = 600 cm/s or 0.6 m/s
Answer:
C
Explanation:
To solve this question, we will need to develop an expression that relates the diameter 'd', at temperature T equals the original diameter d₀ (at 0 degrees) plus the change in diameter from the temperature increase ( ΔT = T):
d = d₀ + d₀αT
for the sphere, we were given
D₀ = 4.000 cm
α = 1.1 x 10⁻⁵/degrees celsius
we have D = 4 + (4x(1.1 x 10⁻⁵)T = 4 + (4.4x10⁻⁵)T EQN 1
Similarly for the Aluminium ring we have
we were given
d₀ = 3.994 cm
α = 2.4 x 10⁻⁵/degrees celsius
we have d = 3.994 + (3.994x(2.4 x 10⁻⁵)T = 3.994 + (9.58x10⁻⁵)T EQN 2
Since @ the temperature T at which the sphere fall through the ring, d=D
Eqn 1 = Eqn 2
4 + (4.4x10⁻⁵)T =3.994 + (9.58x10⁻⁵)T, collect like terms
0.006=5.18x10⁻⁵T
T=115.7K
Answer:
0.3858 Nm
Explanation:
The torque of the couple is the dot product of the force vector and the couple vector from 1 end of the ruler to the center. This equals to the product of their magnitude times the cosine() of the angle made by their direction:
