answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fudgin [204]
2 years ago
14

Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted

electrons. (If no electrons are emitted from a metal, the maximum kinetic energy is zero, so rank that metal as smallest.) Rank from largest to smallest. To rank items as equivalent, overlap them.
Physics
1 answer:
34kurt2 years ago
6 0

Answer:

K.E(K) > K.E(Cs) > 0 (others)

Explanation:

Given the Work functions of the metal as

Aluminium (Wo)=4eV

Platinum(Wo) =6.4eV

Cesium (Wo) =2.1eV

Beryllium (Wo) = 5.0eV

Magnesium (Wo) = 3.7eV

Potassium (Wo) = 2.3eV

Using the formula:

K.E = hf - Wo........(1)

Wo = hfo..............(2)

From these the fo can be calculated for all the metals

Where K.E =Kinetic Energy

hf = energy of illumination = 3.10eV

h is Planck constant and has the value 6.6 × 10^-34JS^-1

The frequency f of the illumination is given by

f = 3.10 × 1.6 × 10^-19/6.6 × 10^-34

f = 7.51 × 10¹⁴ Hz..........(*)

Now an electron is only ejected if the threshold frequency of the metal is reached.

The work function has a threshold frequency (fo) for all the metals and this minimum frequency required to required to remove an electron from the surface of a metal.

We need to compare f with fo

If fo >= f there is emission, otherwise there is no emission

So using (2) we calculate for all fo and compare with f

K.E(Al) = 3.10 - 4.0 - 3.10 = -0.9eV, fo = 9.70 × 10¹⁴ Hz (no emission)

K.E(Pt) = 3.10 - 6.40 = -3.30eV, fo = 1.55 × 10^15 Hz, ( no emission)

K.E(Cs) = 3.10 - 2.10 = -1.0eV, fo = 5.09×10¹⁴ Hz, (emission)

K.E(Be) =3.10-5.0 = -1.90eV, fo = 12.12 ×10^15 Hz.,(no emission)

K.E(Mg) = 3.10-3.70 = -0.6eV, fo = 8.97 × 10¹⁴Hz, (no emission)

K.E(K) = 3.10 - 2.30= 0.9eV, fo = 5.58 × 10¹⁴ Hz, (emission)

So the metals whose electron gain Kinetic energy are:

Cesium

Potassium

Others have zero kinetic energy since no electron is emitted.

Hence the rank is:

K.E(K) > K.E(Cs) > 0 (others)

You might be interested in
Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
kupik [55]
Yupp its c because my dad farted 
3 0
2 years ago
A rabbit is moving in the positive x-direction at 1.10 m/s when it spots a predator and accelerates to a velocity of 10.9 m/s al
anzhelika [568]

Answer:

aₓ = 0 ,       ay = -6.8125 m / s²

Explanation:

This is an exercise that we can solve with kinematics equations.

Initially the rabbit moves on the x axis with a speed of 1.10 m / s and after seeing the predator acceleration on the y axis, therefore its speed on the x axis remains constant.

x axis

          vₓ = v₀ₓ = 1.10 m / s

          aₓ = 0

y axis

initially it has no speed, so v₀_y = 0 and when I see the predator it accelerates, until it reaches the speed of 10.6 m / s in a time of t = 1.60 s. let's calculate the acceleration

         v_{y}= v_{oy} -ay t

          ay = (v_{oy} -v_{y}) / t

          ay = (0 -10.9) / 1.6

          ay = -6.8125 m / s²

the sign indicates that the acceleration goes in the negative direction of the y axis

8 0
2 years ago
If a 110 kg go-cart traveling at a velocity of 13.41 m/s has a collision with an impulse of 615 Nxs, what is the
mafiozo [28]

Answer:

5.59 m/s

Explanation:

We are given;

Mass = 110 kg

Initial velocity: u = 13.41 m/s

Force = 615 N

Time(t) = 1 s

Now, the formula for force is;

Force = mass x acceleration

Thus;

615 = 110 × acceleration

\Acceleration(a) = 615/110 = 5.591 m/s²

Now, using Newton's first law of motion, we can find acceleration (a). Thus;

v = u + at

v = 13.41 + (5.591 × 1)

v ≈ 19 m/s

So,the change in velocity is;

Final velocity(v) - Initial velocity(u) = 19 - 13.41 = 5.59 m/s

6 0
2 years ago
A block of mass m is pushed up against a spring with spring constant k until the spring has been compressed a distance x from eq
Snowcat [4.5K]

Answer:d

Explanation:

Spring is compressed to a distance of x from its equilibrium position

Work done by block on the spring is equal to change in elastic potential energy

i.e. Work done by block W=\frac{1}{2}kx^2

therefore spring will also done an equal opposite amount of work on the block in the absence of external force

Thus work done by spring on the block W=-\frac{1}{2}kx^2

Thus option d is correct

6 0
2 years ago
A radiometer can be used to determine the position of an approaching hot object by measuring the amount of irradiation it detect
forsale [732]

Answer:

The Position of the object L = 0.172 m

Explanation:

The detailed explanation of the question is given in the attach document.

3 0
2 years ago
Other questions:
  • Macy always thought there were only a few hair colors: blond, brown, and black. However, when she actually began looking around,
    12·2 answers
  • Tony uses the device shown in the diagram to model how an electromagnet is used in his uncle’s scrap metal yard. After picking u
    14·2 answers
  • A metal ball with diameter of a half a centimeter and hanging from an insulating thread is charged up with 1010 excess electrons
    10·1 answer
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    9·1 answer
  • A titanium bicycle frame displaces 0.314 l of water and has a mass of 1.41 kg.part what is the density of the titanium in g/cm3
    7·1 answer
  • A stationary 1.67-kg object is struck by a stick. The object experiences a horizontal force given by F = at - bt2, where t is th
    13·1 answer
  • A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
    6·2 answers
  • The nucleus of an atom has all of the following characteristics except that it
    5·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • if a net horizontal force of 175 N is applied to a bike whos mass is 43 kg what acceleration is produced
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!