Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
The neutral table tennis ball will become
polarized, with positive charges toward the glass rod. The
correct answer between all the choices given is the last choice or letter D. I
am hoping that this answer has satisfied your query and it will be able to help
you, and if you would like, feel free to ask another question.
Answer:
4. The direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period
Explanation:
The creosote bush depends on sunlight to produce the food they require through photosynthesis. The shade from the solar panels would reduce the amount of sunlight that the bush receives. This would increase the mortality of the bush.
In order to test the hypothesis the student must record the direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period. If the plants receive sunlight less than the above amount the plants should start dying. If not then the hypothesis is false.
Hence, the answer is 4. The direct sunlight received by creosote bush in the desert area (in kWh/m2) during a 12 month period.
b) between poles M1 and M2
Explanation:
From the expression, we can deduce that r is the distance between two magnetic poles M1 and M2.
The law of attraction between two magnetic poles states that:
<em> the force of attraction or repulsion between two magnetic poles is a function of the product of the strength of the magnetic poles and the square of the distance between the pole</em>s
Mathematically:
FM = K 
here r is the distance between the poles
FM is the magnetic force between the poles
M1 is the strength of the first magnetic pole
M2 is the strength of the second pole
K is the magnetic field constant
learn more:
magnetic pole brainly.com/question/2191993
#learnwithBrainly