answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
1 year ago
6

A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa

st each other.
What is most likely the phase of the substance?

gas
liquid
solid and gas
liquid and solid
Physics
1 answer:
Law Incorporation [45]1 year ago
3 0

Answer:

D. Liquid and Solid.

Explanation:

PLZ PLZ PLZ GIVE ME BRAINLIEST WHEN YOU CAN I ONLY NEED 5 MORE

You might be interested in
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at
Allisa [31]

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

8 0
1 year ago
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
Suppose Galileo dropped a lead ball (100 kilograms) and a glass ball (1 kilogram) from the Leaning Tower of Pisa. Which one hit
Reika [66]

The Answer is C Both at the same time

3 0
1 year ago
A steel tank of weight 600 lb is to be accelerated straight upward at a rate of 1.5 ft/sec2. Knowing the magnitude of the force
VikaD [51]

Answer:

a) the values of the angle α is 45.5°

b) the required magnitude of the vertical force, F is 41 lb

Explanation:

Applying the free equilibrium equation along x-direction

from the diagram

we say

∑Fₓ = 0

Pcosα - 425cos30° = 0

525cosα - 368.06 = 0

cosα = 368.06/525

cosα = 0.701

α = cos⁻¹ (0.701)

α = 45.5°

Also Applying the force equation of motion along y-direction

∑Fₓ = ma

Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)

525sin45.5° + F + 212.5 - 600 = 27.95

374.46 + F + 212.5 - 600 = 27.95

F - 13.04 = 27.95

F = 27.95 + 13.04

F = 40.99 ≈ 41 lb

8 0
2 years ago
A small child gives a plastic frog a big push at the bottom of a slippery 2.0 meter long, 1.0 meter high ramp, starting it with
valentinak56 [21]
Refer to the diagram shown below.

Because the ramp is slippery, ignore dynamic friction.
Let m =  the mass of the frog.
g = 9.8 m/s²

The KE (kinetic energy) at the bottom of the ramp is
KE₁ = (1/2)*(m kg)*(5 m/s)² = 12.5 m J

Let v =  the velocity at the top of the ramp.
The KE at the top of the ramp is
KE₂ = (1/2)*m*v²= 0.5 mv² J
The PE (potential energy) at the top of the ramp relative to the bottom is
PE₂ = (m kg)*(9.8 m/s²)*(1 m) = 9.8m J

Conservation of energy requires that
KE₁ = KE₂ + PE₂
12.5m = 0.5mv² + 9.8m
0.5v² = 2.7
v = 2.324 m/s

Answer: 2.324 m/s

7 0
2 years ago
Other questions:
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    15·2 answers
  • Alex is standing still and throws a football with a speed of 10 m/s to his friend, who is also standing still. The two friends a
    12·2 answers
  • If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in
    5·1 answer
  • The standard acceleration (at sea level and 45◦ latitude) due to gravity is 9.806 65 m/s2. What is the force needed to hold a ma
    10·1 answer
  • A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
    8·1 answer
  • What is the equation describing the motion of a mass on the end of a spring which is stretched 8.8 cm from equilibrium and then
    15·2 answers
  • the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
    14·1 answer
  • On a horizontal, linear track lies a cart that has a fan attached to it. The mass of the cart plus fan is 364 g. The cart is pos
    15·2 answers
  • A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!