For the answer to the question above,
<span>Q = amount of heat (kJ) </span>
<span>cp = specific heat capacity (kJ/kg.K) = 4.187 kJ/kgK </span>
<span>m = mass (kg) </span>
<span>dT = temperature difference between hot and cold side (K). Note: dt in °C = dt in Kelvin </span>
<span>Q = 100kg * (4.187 kJ/kgK) * 15 K </span>
<span>Q = 6,280.5 KJ = 6,280,500 J = 1,501,075.5 cal</span>
<span>A = area of styrofoam
M = mass of stryofoam = A*h*rho_s
m = mass of swimmer
Total mass = m + M = m + A*h*rho_s
Downward force = g*(total mass) = g*[m + A*h*rho_s]
The slab is completely submerged.
Buoyant force = g*(mass of water displaced) = g*[A*h*rho_w]
Equate these
g*[m + A*h*rho_s] = g*[A*h*rho_w]
m + A*h*rho_s = A*h*rho_w
A*h*[rho_w - rho_s] = m
A = m/[h*(rho_w - rho_s)]</span>
Answer: 14.52*10^6 m/s
Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.
the change in potential energy for the electron; e*ΔV is equal to energy kinetic gained for the electron so:
e*ΔV=1/2*m*v^2 v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s
The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest