answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
2 years ago
6

A beam of monochromatic light (f =5.09 ×1014 Hz) has a wavelength of 589 nanometers in air. What is the wavelength of this light

in Lucite?
(1)150 nm
(2)393 nm
(3)589 nm
(4)884 nm
Physics
1 answer:
frosja888 [35]2 years ago
7 0
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:
v=\frac{c}{n}
where c=3 \cdot 10^8 m/s is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is
v=\frac{3 \cdot 10^8 m/s}{1.50}=2\cdot 10^8 m/s
The frequency of the light is f=5.09 \cdot 10^{14}Hz, so now we can calculate the wavelength in lucite by using the formula:
\lambda=\frac{v}{f}=\frac{2\cdot 10^8 m/s}{5.09 \cdot 10^{14} Hz}=3.93 \cdot 10^{-7} m=393 nm
<span>Therefore, the correct answer is (2) 393 nm.</span>
You might be interested in
Two objects are dropped from rest from the same height. Object A falls through a distance Da and during a time t, and object B f
stiv31 [10]

Answer:

Da=(1/4)Db

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

When s = Da, t = t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times t^2\\\Rightarrow Da=\frac{1}{2}at^2

When s = Db, t = 2t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times (2t)^2\\\Rightarrow Db=\frac{1}{2}a4t^2

Dividing the two equations

\frac{Da}{Db}=\frac{\frac{1}{2}at^2}{\frac{1}{2}a4t^2}=\frac{1}{4}\\\Rightarrow \frac{Da}{Db}=\frac{1}{4}\\\Rightarrow Da=\frac{1}{4}Db

Hence, Da=(1/4)Db

3 0
2 years ago
The burning of fossil fuels contributes to the addition of greenhouse gases to the atmosphere. These gases trap thermal energy i
denpristay [2]

Answer:

B. there would be a global rise in temperatures

Hence, global warming

Explanation:

hope this helped! :D

5 0
2 years ago
Read 2 more answers
Which statement correctly describes the relationship between frequency and wavelength?
Len [333]
The relationship between the frequency and wavelength of a wave is given by the equation:

v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency. 

If we divide the equation by f we get:

λ=v/f

From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases. 

So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.  
3 0
2 years ago
Read 2 more answers
Dawn and Aram have stretched a slinky between them and begin experimenting with waves. As the frequency of the waves is doubled
m_a_m_a [10]

Answer:

halved

Explanation:

The velocity of the a wave is obtained by multiplying the frequency and wavelength.

v=f\lambda\\\Rightarrow f=\frac{v}{\lambda}\\\Rightarrow \lambda=\frac{v}{f}

Where

v = Velocity

f = Frequency

\lambda = Wavelength

The velocity here is constant. So, if the frequency is doubled the wavelength is halved.

6 0
2 years ago
Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
solong [7]

Answer:u=97.41m/s

Explanation:

Given

inclination \theta =58.7^{\circ}C

Horizontal distance travel by Particle d=1200 m

Vertical height h=780 m

Let u be the initial velocity

calculating vertical distance

y=u\sin \theta +\frac{at^2}{2}

y=u\sin \theta t-\frac{gt^2}{2}-------1

Calculating horizontal distance

x=u\cos \theta \times t+0

t=\frac{x}{u\cos \theta }

put value of t in equation 1

y=u\sin \theta \times \frac{x}{u\cos \theta }-\frac{g}{2}\times (\frac{x}{u\cos \theta })^2

y=x\tan \theta -\frac{gx^2}{2u^2\cos ^2\theta }

\frac{gx^2}{2u^2\cos ^2\theta }=x\tan \theta -y

u^2=\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}

u=\sqrt{\frac{gx^2}{2cos^2\theta (x\tan \theta -y)}}

at y=-780\ m\ x=1200 m

u^2=\frac{18.154}{2753.65}\times 1200^2

u=97.41 m/s

6 0
2 years ago
Other questions:
  • A cart moves along a track at a velocity of 3.5 cm/s. when a force is applied to the cart, its velocity increases to 8.2 cm/s. i
    15·2 answers
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    15·2 answers
  • Give two ways in which the water vapour changes as it passes down the glass tube in the condenser
    12·1 answer
  • The short vertical parts adjacent to it also reach into the magnetic field and should experience forces. why can we neglect them
    7·1 answer
  • For a sine wave depicting simple harmonic motion, the smaller the amplitude of the wave, the smaller the of the pendulum from th
    14·2 answers
  • Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
    14·2 answers
  • A box slides down a frictionless plane inclined at an angle θ ¸ above the horizontal. The gravitational force on the box is dire
    12·2 answers
  • A person driving a car suddenly applies the brakes. The car takes 4 s to come to rest while traveling 20 m at constant accelerat
    13·1 answer
  • The sun transfers energy to the earth by radiation at a rate of approximately 1.00 kW per square meter of surface.
    9·1 answer
  • Water is kept in a vessel at a temperature of 100°C. What would happen if a metal ball having a temperature of 30°C is dropped i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!