answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
2 years ago
12

In an experiment, one of the forces exerted on a proton is F⃗ =−αx2i^, where α=12N/m2. What is the potential-energy function for

F⃗ ? Let U=0 when x=0.
Physics
1 answer:
Blizzard [7]2 years ago
7 0

Answer:

The potential energy is -4x^3

Explanation:

Given that,

Force F=-\alpha x^2 i

We need to calculate the potential energy

Using formula of work done

\Delta U=F(x) dx

Put the value of F

\Delta U=-\alpha x^2\ dx

On integration

U=-\alpha \dfrac{x^3}{3}+C

U=-\dfrac{\alpha x^3}{3}+C...(I)

U = 0, x = 0 so C = 0

Put the value of c and α in equation (I)

U=-\dfrac{12x^3}{3}+0

U=-4x^3

Hence, The potential energy is -4x^3

You might be interested in
A 1.0 kg object moving at 4.5 m/s has a wavelength of:
Lisa [10]
By wave particle  duality.

Wavelength , λ = h / mv

where h = Planck's constant = 6.63 * 10⁻³⁴ Js,  m = mass in kg,  v = velocity in m/s.
m = 1kg,  v = 4.5 m/s

λ = h / mv

λ = (6.63 * 10⁻³⁴) /(1*4.5)

λ ≈  1.473 * 10⁻³⁴  m

Option D.
7 0
2 years ago
(HELP!!! 30 pts if answered right. )What formula gives the strength of an electric field, E, at a distance from a known source c
umka2103 [35]

Answer:

E=\frac{k\,Q}{d^2}

Explanation:

The strength of an electric field E produced by a single charge Q at a distance d from it is given by the formula: E=\frac{k\,Q}{d^2}, where K represents the Coulomb constant.

Since the electric field E is derived from the Coulomb Force per unit charge using a positive test charge, the field's units will be in units of Newtons/Coulomb, and be the formula for the Coulomb electric force between to charges (Q1 and Q2),

F_C=k\frac{Q_1\,Q_2}{d^2}

but modified with only one charge showing in the numerator of the expression.

8 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
A heat pump absorbs heat from the cold outdoors at 3°c and supplies heat to a house at 20°c at a rate of 30,000 kj/h. if the p
Mazyrski [523]
A heat pump absorbs heat from the cold outdoors at 3 C and supplies heat to a
house at 20 C at a rate of 30,000 kJ/h. If the power consumed by the heat pump
<span>is 3 kW, find the coefficient of performance of the heat pump.</span>
6 0
2 years ago
A 100 cm3 block of lead weighs 11N is carefully submerged in water. One cm3 of water weighs 0.0098 N.
Pie

#1

Volume of lead = 100 cm^3

density of lead = 11.34 g/cm^3

mass of the lead piece = density * volume

m = 100 * 11.34 = 1134 g

m = 1.134 kg

so its weight in air will be given as

W = mg = 1.134* 9.8 = 11.11 N

now the buoyant force on the lead is given by

F_B = W - F_{net}

F_B = 11.11 - 11 = 0.11 N

now as we know that

F_B = \rho V g

0.11 = 1000* V * 9.8

so by solving it we got

V = 11.22 cm^3

(ii) this volume of water will weigh same as the buoyant force so it is 0.11 N

(iii) Buoyant force = 0.11 N

(iv)since the density of lead block is more than density of water so it will sink inside the water


#2

buoyant force on the lead block is balancing the weight of it

F_B = W

\rho V g = W

13* 10^3 * V * 9.8 = 11.11

V = 87.2 cm^3

(ii) So this volume of mercury will weigh same as buoyant force and since block is floating here inside mercury so it is same as its weight =  11.11 N

(iii) Buoyant force = 11.11 N

(iv) since the density of lead is less than the density of mercury so it will float inside mercury


#3

Yes, if object density is less than the density of liquid then it will float otherwise it will sink inside the liquid

3 0
2 years ago
Other questions:
  • A vector A is added to B=6i-8j. The resultant vector is in the positive x direction and has a magnitude equal to A . What is the
    12·2 answers
  • An electron is pushed into an electric field where it acquires a 1-v electrical potential. suppose instead that two electrons ar
    5·2 answers
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • Voices of swimmers at a pool travel 400 m/s through the air and 1,600 m/s underwater. The wavelength changes from 2 m in the air
    13·2 answers
  • A man is standing on a platform that is connected to a pulley arrangement, as the drawing shows. By pulling upward on the rope w
    9·1 answer
  • A factory robot drops a 10 kg computer onto a conveyor belt running at 3.1 m/s. The materials are such that
    9·1 answer
  • Heating a metal from room temperature to pouring temperature in a casting operation depends on all of the following properties e
    9·1 answer
  • Betelgeuse is the bright red star representing the left shoulder of the constellation Orion. All the following statements about
    7·1 answer
  • From mechanics, you may recall that when the acceleration of an object is proportional to its coordinate, d2xdt2=−kmx=−ω2x , suc
    10·1 answer
  • A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!