Answer:
16.77 m/s
Explanation:
Given that
Frequency of middle pitch, Fo = 261.6 Hz
Frequency of C sharp, f = 277.2 Hz
Velocity of sound in air, v = 298 m/s
Speed of sound from the source, Vs = ? m/s
Using the formula
f = Fo•(V + Vr)/(V + Vs)
← Doppler
Vr would be +ve if the receiver is moving toward source;
Vs would be -ve if source is moving toward the receiver
277.2 Hz = 261.6Hz * (298 + 0) / (298 - Vs)
277.2 = 77956.8 / (298 - Vs)
298 - Vs = 77956.8 / 277.2
298 - Vs = 281.23
Vs = 298 - 281.23
Vs = 16.77 m/s
Thus, the speed needed is 16.77 m/s
Answer:
Explanation:
The rate at which heat will be radiated is given by the expression
E = e Aσ ( T⁴ - T₀⁴ )
E is heat radiated , e is emissivity , A is area of surface , σ is stephan's constant T is temperature of the object and T₀ is temperature of the surrounding .
For all the objects given , e , σ T and T₀ are same so E will solely dependent on area of the surface
surface area of cube= 6 r² ,
surface area of sphere = 4 π r²
= 12.56 r²
hemisphere = 2 π r²
= 6.28 r²
12.56 r² >6.28 r² > 6 r²
heat radiated by sphere > heat radiated by hemisphere > heat radiated by cube .
Answer:
a. Her moment of inertia increases and she rotates slower.
Explanation:
As we know that initially when she starts her motion she is in piked position due to which her whole mass is concentrated near the axis of rotation
So here the rotational Inertia of her body will be smaller
Now when is comes closer to the position of landing she extends into layout position due to which her mass will move away from the axis of rotation
Due to this the rotational inertia of her body will increase
now we know that there is no external torque on the system
so here angular momentum must be conserved
So we will have

so if rotational inertia is increasing then angular speed must be slower
so correct answer will be
a. Her moment of inertia increases and she rotates slower.
Answer:

Explanation:
<u>Horizontal Launch</u>
When an object is launched horizontally at a speed vo, it describes a curved called parabola as the speed in the x-direction does not change and the speed in the y-direction increases with time because the gravity makes it return to the ground.
The vertical distance the object (potato) travels downwards is:

The horizontal distance is

We need to find the time when both distances are equal, thus

Simplifying by t

Solving for t

Answer:

Explanation:
we know angular velocity in terms of moment of inertia and angular speed
ω .... (1)
moment of inertia of rod rotating about its center of length b
........ .(2)
using v = ωr
where w is angular velocity
and r is radius of rod which is equal to b
so we get 2v = ωb
ω = 2v/b ................. (3)
here velocity is two time because two opposite ends are moving opposite with a velocity v so net velocity will be 2v
put second and third equation in ist equation
×
so final answer will be 