answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
2 years ago
9

A 1-m-long monopole car radio antenna operates in the AM frequency of 1.5 MHz. How muchcurrent is required to transmit 4 W of po

wer?
Physics
1 answer:
Zanzabum2 years ago
5 0

Answer:

The current needed to transmit Power of 4 W is 28.47 A

Solution:

As per the question:

Length of the antenna, L_{a} = 1 m

Frequency, \vartheta = 1.5 MHz = 1.5\times 10^{6} Hz

Power transmitted, P_{t} = 4 W

Now,

For a monopole antenna:

\lambda_{a} = \frac{c}{\vartheta}

where

\lambda_{a} = wavelength transmitted by the antenna

c = speed of light in vacuum

\lambda_{a} = \frac{3\times 10^{8}}{1.5\times 10^{6}} = 200 m

Now,

Since, the value of \lambda_{a} >> L_{a} thus the monopole is a Hertian monopole.

The resistance is calculated as:

R = \frac{1}{2}(\frac{dL_{a}}{\lambda_{a}})^{2}\times 80\pi^{2}

R = \frac{1}{2}(\frac{1}{200)^{2}\times 80\pi^{2} = 9.869\times 10^{- 3} = 9.869 m\Omega

P_{radiated} = P_{t}

P_{radiated} = \frac{R}{I^{2}}

Now, the current I is given by:

I = \sqrt{\frac{2P_{t}}{R}} = \sqrt{\frac{2\times 4}{9.869\times 10^{- 3}}} = 28.47 A

You might be interested in
(a) when rebuilding her car's engine, a physics major must exert 300 n of force to insert a dry steel piston into a steel cylind
Vilka [71]
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03

Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:
F_f = \mu N
where \mu is the coefficient of friction, while N is the normal force. So we have:
F=\mu N
since we know that F=300 N and \mu=0.3, we can find N, the magnitude of the normal force:
N= \frac{F}{\mu}= \frac{300 N}{0.3}=1000 N

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is \mu=0.03 due to the presence of the oil. Therefore, we have:
N= \frac{F}{\mu}= \frac{300 N}{0.03}=10000 N
8 0
2 years ago
You decide to work at a heart rate of 150 instead of 120. What area of F.I.T.T. did you change?
Rina8888 [55]

Key concepts

Heart rate

Exercising

The heart

Cardiovascular system

Health

Introduction

As Valentine's Day approaches, we're increasingly confronted with "artistic" images of the heart. Real hearts hardly resemble to two-lobed shapes adorning cards and candy boxes this time of year. And the actual shape of the human heart is important for its function of supplying blood to the entire body. You have likely noticed that your heart beats more quickly when you exercise. But have you ever taken the time to observe how long it takes to return to its normal rate after you're done exercising? In this science activity you'll get to do some exercises to explore your own heart-rate recovery time.

Background

Your heart is continuously beating to keep blood circulating throughout your body. Its rate changes depending on your activity level; it is lower while you are asleep and at rest and higher while you exercise—to supply your muscles with enough freshly oxygenated blood to keep the functioning at a high level. Because your heart is also a muscle, exercise, in turn, helps keep it healthy. The American Heart Association recommends that a person does exercise that is vigorous enough to raise their heart rate to their target heart-rate zone—50 percent to 85 percent of their maximum heart rate, which is 220 beats per minute (bpm) minus their age for adults—for at least 30 minutes on most days, or about 150 minutes a week in total. So for a 20-year-old, the maximum heart rate would be 200 bpm, with a target heart-rate zone of 100 to 170 bpm. (For those 19 or younger, target zones can vary more than they do for adults.)

i think it will help you...if it help you ...please mark brainless

8 0
2 years ago
Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.
tamaranim1 [39]

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

4 0
2 years ago
A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in t
stiv31 [10]

Answer:

D) 117 rad/s

Explanation:

We can treat this system as a circular motion where the origin is the elbow joint, the ball rotation velocity v is 35 m/s, the rotation radius is r = 0.3m.

As the ball is leaving the pitcher hand at such speed and rotation radius. Its angular velocity is:

\omega = \frac{v}{r} = \frac{35}{0.3} = 117 rad/s

3 0
2 years ago
What is the gauge pressure of the water right at the point p, where the needle meets the wider chamber of the syringe? neglect t
Helen [10]

Missing details: figure of the problem is attached.

We can solve the exercise by using Poiseuille's law. It says that, for a fluid in laminar flow inside a closed pipe,

\Delta P =  \frac{8 \mu L Q}{\pi r^4}

where:

\Delta P is the pressure difference between the two ends

\mu is viscosity of the fluid

L is the length of the pipe

Q=Av is the volumetric flow rate, with A=\pi r^2 being the section of the tube and v the velocity of the fluid

r is the radius of the pipe.

We can apply this law to the needle, and then calculating the pressure difference between point P and the end of the needle. For our problem, we have:

\mu=0.001 Pa/s is the dynamic water viscosity at 20^{\circ}

L=4.0 cm=0.04 m

Q=Av=\pi r^2 v= \pi (1 \cdot 10^{-3}m)^2 \cdot 10 m/s =3.14 \cdot 10^{-5} m^3/s

and r=1 mm=0.001 m

Using these data in the formula, we get:

\Delta P = 3200 Pa

However, this is the pressure difference between point P and the end of the needle. But the end of the needle is at atmosphere pressure, and therefore the gauge pressure (which has zero-reference against atmosphere pressure) at point P is exactly 3200 Pa.

8 0
2 years ago
Other questions:
  • Hydrogen-3 has a half-life of 12.35 years. What mass of hydrogen-3 will remain form a 100.0 MG initial sample after 5.0 years? A
    11·1 answer
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • Jake uses a fire extinguisher to put out a small fire. When he squeezes the handle, the flame rettardant is released from the ex
    11·2 answers
  • A professional driver drove a long linear route at an average speed of 30 miles per hour. Immediately after completing this driv
    12·2 answers
  • A thin, horizontal, 18-cm-diameter copper plate is charged to -3.8 nC. Assume that the electrons are uniformly distributed on th
    5·1 answer
  • A tennis ball bounces on the floor three times. If each time it loses 22.0% of its energy due to heating, how high does it rise
    9·1 answer
  • The last page of a book is numbered 764. The book is 3.0 cm thick, not including its covers. What is the average thickness (in c
    8·1 answer
  • A laser emits two wavelengths (λ1 = 420 nm; λ2 = 630 nm). When these two wavelengths strike a grating with 450 lines/mm, they pr
    13·1 answer
  • When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
    15·1 answer
  • At a drag race, a jet car travels 1/4 mile in 5.2 seconds. What is the final speed of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!