Answer:
dont you have to times it
Explanation:
Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
Answer:
The speed of light will be c=3x10^8m/s
Explanation:
This is the same as the speed of light because your speed does not affecttje speed of light so you will see the light approaching you at the same speed of light c
Answer:
ULTIMATE CORRECT ANSWER
collaboration and communication
Explanation:
Answer:
ω = 4.07 rad/s
Explanation:
By conservation of the energy:
W = ΔK

where 
Solving for ω:
