Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
It will be a little bit less because of evaporation i learned that in third grade and your in high school that is sad
Answer:
There is 148.35 Joules of heat is released in the process.
Explanation:
Given that,
Heat capacity of the object, 
Initial temperature, 
Final temperature, 
We need to find the amount of heat released in the process. It is a concept of heat capacity. The heat released in the process is given by :

Let the mass of the object is 10 g or 0.01 kg
So,

Q = 148.35 Joules
So, there is 148.35 Joules of heat is released in the process. Hence, this is the required solution.
Answer:
The moon region
Explanation:
This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.
Answer:
shown in the attachment
Explanation:
The detailed step by step and necessary mathematical application is as shown in the attachment.