Answer:
Option B and C are True
Note: The attachment below shows the force diagram
Explanation:
The weight of the two blocks acts downwards.
Let the weight of the two blocks be W. Solving for T₁ and T₂;
w = T₁/cos 60° -----(1)
w = T₂/cos 30° ----(2)
equating (1) and (2)
T₁/cos 60° = T₂/cos 30°
T₁ cos 30° = T₂ cos 60°
T₂/T₁ = cos 30°/cos 60°
T₂/T₁ =1.73
Therefore, option a is false since T₂ > T₁
Option B is true since T₁ cos 30° = T₂ cos 60°
Option C is true because the T₃ is due to the weight of the two blocks while T₄ is only due to one block.
Option D is wrong because T₁ + T₂ > T₃ by simple summation of the two forces, except by vector addition.
Answer:
A driver.
Explanation:
Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.
Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds
Answer:
Sample Response: If temperature and surface area increase, then the time it takes for sodium bicarbonate to completely dissolve will decrease, because increasing both factors increases the rate of a chemical reaction.
Explanation:
It would be 17 m/s
If we use
V2 = V1 + a*t
Sub in 5 for v1
2m/s*2 for a
And
6 for t
That should give you the answer.